В теории игр Принцесса и Чудовище — это игра преследования[en], в которой два игрока играют в некоторой области. Разработана Айзеком Руфусом и опубликована в его книге Дифференциальные игры (1965) в следующем виде: «Монстр ищет принцессу, потраченное на поиск время является ценой игры. Оба находятся в совершенно тёмном помещении (любой формы), но оба знают его границы. Найти принцессу означает, что расстояние между принцессой и монстром оказывается в пределах радиуса захвата, который должен быть относительно мал по отношению к размерам помещения. Монстр достаточно разумен и движется с известной скоростью. Принцессе разрешается полная свобода движения»[1].
Эта игра оставалась хорошо известной открытой проблемой, пока не была решена Галом[en] в конце 1970-х годов[2][3]. Его оптимальная стратегия для принцессы следующая: принцесса переходит в случайную точку помещения и ждёт в этой точке некоторый интервал времени, не слишком короткий и не слишком длинный. Затем принцесса переходит в другую (независимую) случайную точку и так далее[3][4][5]. Для монстра предлагается оптимальная стратегия поиска, в которой всё пространство помещения делится на много мелких прямоугольников. Монстр выбирает прямоугольник случайно и ищет некоторым образом вокруг, затем выбирает случайно и независимо другой прямоугольник, и так далее.
Игру принцессы и монстра можно играть на заранее выбранном графе (возможным простым графом может служить окружность, которую Айзекс предложил как ступеньку для игр в произвольной области). Можно показать, что для любого конечного графа существует оптимальная смешанная стратегия, приводящая к постоянной цене игры. Игра решена Стивом Алперном[en] и, независимо, Михаилом Зеликиным только для очень простого графа, состоящего из единственной петли (окружности)[6][7]. Эта игра выглядит просто, но на самом деле достаточно сложна. К удивлению, очевидная стратегия начать с одного случайного конца и выметание отрезка настолько быстро, насколько возможно, не оптимальна. Эта стратегия гарантирует 0,75 ожидаемого времени захвата. Используя более сложную смешанную стратегию, можно сократить время примерно на 8,6 %. Фактически, это число может быть близко к цене игры, если кто-либо докажет оптимальность соответствующей стратегии для принцессы[8][9].
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .