WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Предположение о замкнутости мира (англ. CWA, closed world assumption) — стратегия, при которой положительный литерал, который не является следствием формул в некоторой базе знаний, считается ложным. Данное предположение позволяет упростить систему замещением неоднозначности (есть — нет — неизвестно) дуализмом (есть — нет). Широко используется в компьютерных системах, в том числе в СУБД.

Например: имея базу знаний, состоящую из литералов

  • «Вася любит собак»;
  • «Женя любит кошек»;
  • «Женя не любит собак»;

в логике первого порядка невозможно дать определенный ответ на вопрос, любит ли Вася кошек, поскольку невозможно доказать ни литерал «Вася любит кошек», ни «Вася не любит кошек». Но при предположении о замкнутости мира, положительный литерал «Вася любит кошек» считается ложным, что позволяет заключить, что Вася кошек не любит.

Формальное определение в логике

Если  — множество формул, то при наивном предположении о замкнутости мира является множеством , то есть объединение и множества отрицаний тех положительных литералов, которые не следуют из .

При этом может оказаться логически противоречивым; например, если , положительные литералы, то . Но если состоит из дизъюнктов Хорна, то противоречивости не будет.

Существует ряд альтернативных предположений о замкнутости мира которые имеют форму и отличаются определением множества :

  • GCWA (обобщённое ПЗМ, англ. generalized CWA): положительный литерал является элементом если не существует дизъюнкции положительных литералов таковой, что но .
  • CCWA (осторожное ПЗМ, англ. careful CWA): множество положительных литералов разбивается на три части: , , . Элементы определяется так же, как в GCWA, но является дизъюнкцией литералов из и и отрицаний литералов из .
  • EGCWA (расширенное обобщённое ПЗМ, англ. extended GCWA): то же, что и GCWA, но может быть конъюнкцией положительный литералов.
  • ECWA (расширенное ПЗМ, англ. extended CWA): то же, что и CCWA, но может быть любой замкнутой формулой, которая не включает литералы из .

Литература


  • M. Cadoli and M. Lenzerini (1994). The complexity of propositional closed world reasoning and circumscription. Journal of Computer and System Sciences, 48:255-310.
  • T. Eiter and G. Gottlob (1993). Propositional circumscription and extended closed world reasoning are -complete. Theoretical Computer Science, 114:231-45.
  • A. Rajasekar, J. Lobo, and J. Minker (1989). Weak generalized closed world assumption. Journal of Automated Reasoning, 5:293-307.
  • V. Lifschitz (1985). Closed-world databases and circumscription. Artificial Intelligence, 27:229-35.
  • J. Minker (1982). On indefinite databases and the closed world assumption. In Proceedings of the Sixth International Conference on Automated Deduction (CADE’82), pp. 292—308.
  • R. Reiter (1978). On closed world data bases. In H. Gallaire and J. Minker, editors, Logic and Data Bases, pp. 119-40. Plenum Publ. Co., New York.

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии