WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Правило Рунге — правило оценки погрешности численных методов, было предложено К. Рунге в начале 20 века.[1]

Основная идея (для методов Рунге-Кутты решения ОДУ) состоит в вычислении приближения выбранным методом с шагом h, а затем с шагом h/2, и дальнейшем рассмотрении разностей погрешностей для этих двух вычислений.

Применение правила Рунге

Оценка точности вычисления определённого интеграла

Интеграл вычисляется по выбранной формуле (прямоугольников, трапеций, парабол Симпсона) при числе шагов, равном n, а затем при числе шагов, равном 2n. Погрешность вычисления значения интеграла при числе шагов, равном 2n, определяется по формуле Рунге:
, для формул прямоугольников и трапеций , а для формулы Симпсона .[2]

Таким образом, интеграл вычисляется для последовательных значений числа шагов , где n0 — начальное число шагов. Процесс вычислений заканчивается, когда для очередного значения N будет выполнено условие , где ε — заданная точность.

Оценка точности численного решения ОДУ

Также применяется для оценки точности решений обыкновенных дифференциальных уравнений на регулярных сетках. Для оценки требуется решить задачу на 2 сетках, один раз с шагом h ( ) и второй — с шагом h/2 ( ). Формула[3]

дает погрешность решения . Под понимается порядок точности использованного численного метода. Например, для численного метода, имеющего четвёртый порядок точности, формула принимает вид:

Примечания

  1. Ivan P. Gavrilyuk, «2.4 A posteriori error estimation and automatic grid generation.» // Exact and Truncated Difference Schemes for Boundary Value ODEs, Springer, 2011, ISBN 9783034801072, pages 76-77: «The first possibility is the classic technique which has been proposed by Carl Runge.»
  2. Огородников А. С., Орлов О. В.,6. Правило Рунге оценки погрешности интегрирования // Лабораторная работа № 4. Численное интегрирование, Лабораторный практикум по курсу «Численные методы» (ЭНИН), Томский политехнический университет
  3. П. В. Виноградова, А. Г. Ереклинцев, 8. ЧИСЛЕННОЕ РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЕРВОГО ПОРЯДКА // ЧИСЛЕННЫЕ МЕТОДЫ, Дальневосточный государственный университет путей сообщения, 2011

Литература

  • РУНГЕ ПРАВИЛО // Математическая энциклопедия. — М.: Советская энциклопедия. И. М. Виноградов. 1977—1985.
  • Березин И. С., Жидков Н. П., Методы вычислений, 3 изд., т. 1, М., 1966; 2 изд., т. 2, М., 1962;
  • Современные численные методы решения обыкновенных дифференциальных уравнений, пер. с англ., М., 1979. А. Б. Иванов.

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии