Правило Рунге — правило оценки погрешности численных методов, было предложено К. Рунге в начале 20 века.[1]
Основная идея (для методов Рунге-Кутты решения ОДУ) состоит в вычислении приближения выбранным методом с шагом h, а затем с шагом h/2, и дальнейшем рассмотрении разностей погрешностей для этих двух вычислений.
Интеграл вычисляется по выбранной формуле (прямоугольников, трапеций, парабол Симпсона) при числе шагов, равном n, а затем при числе шагов, равном 2n. Погрешность вычисления значения интеграла при числе шагов, равном 2n, определяется по формуле Рунге:
, для формул прямоугольников и трапеций
, а для формулы Симпсона
.[2]
Таким образом, интеграл вычисляется для последовательных значений числа шагов , где n0 — начальное число шагов. Процесс вычислений заканчивается, когда для очередного значения N будет выполнено условие , где ε — заданная точность.
Также применяется для оценки точности решений обыкновенных дифференциальных уравнений на регулярных сетках. Для оценки требуется решить задачу на 2 сетках, один раз с шагом h ( ) и второй — с шагом h/2 ( ). Формула[3]
дает погрешность решения . Под понимается порядок точности использованного численного метода. Например, для численного метода, имеющего четвёртый порядок точности, формула принимает вид:
Для улучшения этой статьи по математике желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .