Переопределённая система — система, число уравнений которой больше числа неизвестных.
Для однозначного решения линейной системы уравнений нужно иметь n уравнений при n переменных величинах. Если уравнений меньше, чем число переменных величин, то такая система не определена (или несовместна, см. следствие 2 в Метод Гаусса). Также система n (или больше) уравнений может быть недоопределена, если некоторые уравнения не поставляют никакую дополнительную независимую от других уравнений информацию.
В силу отсутствия точного решения переопределённых систем, на практике принято вместо него отыскивать вектор, наилучшим образом удовлетворяющий всем уравнениям, то есть минимизирующий норму невязки системы в какой-нибудь степени. Этой проблеме посвящён отдельный раздел математической статистики — регрессионный анализ. Наиболее часто минимизируют квадрат отклонений от оцениваемого решения. Для этого применяют так называемый метод наименьших квадратов.
Для улучшения этой статьи желательно: |
![]() |
Это заготовка статьи по математике. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .