WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Теорема Шварца — Кристоффеля — важная теорема в теории функций комплексного переменного, носит название немецких математиков Карла Шварца и Элвина Кристоффеля.

Очень важной с практической точки зрения является проблема о конформном отображении некой канонической области (единичного круга или верхней полуплоскости ) на внутренность произвольного многоугольника. Важность следующей теоремы в том, что она дает общий вид таких отображений.


Теорема

Предположим, что  — некоторый -угольник, а функция осуществляет конформное отображение на . Тогда можно представить в виде

,

где  — прообразы вершин на вещественной оси,  — радианные меры соответствующих внутренних углов, деленные на (то есть, развернутый угол соответствует нулевой степени), а и  — так называемые акцессорные параметры. Интеграл в правой части имеет собственное название — его называют интегралом Шварца — Кристоффеля I рода.

В случае, если прообраз одной из вершин многоугольника находится в бесконечности, то формула немного видоизменяется. Если -ая вершина имеет своим прообразом бесконечно удалённую точку, то формула будет иметь вид

,

то есть множитель, соответствующий этой вершине, будет просто отсутствовать. Такой интеграл будет интегралом Шварца — Кристоффеля II рода.

Трудность использования этих формул состоит в том, что точки , как и акцессорные параметры, в общем случае неизвестны. Для их вычисления обычно на многоугольник накладываются какие-то дополнительные нормировки, либо вычисление производится приближённо (что применяется на практике).

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии