WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Событие B одновременно с A в зеленой системе отсчета, но оно произошло раньше в синей системе отсчета и произойдет позже в красной системе отсчета.
События A, B и C происходят в разном порядке в зависимости от движения наблюдателя. Белая линия представляет собой плоскость одновременности, перемещаемую из прошлого в будущее.

В физике относительность одновременности - это понятие о том, что отдаленная одновременность - происходят ли два пространственно разделенных события в одно и то же время - не абсолютна, а зависит от системы отсчета наблюдателя.

Описание

Согласно специальной теории относительности Эйнштейна, невозможно сказать в абсолютном смысле, что два разных события происходят одновременно, если эти события разделены в пространстве. Если одна система отсчета назначает одно и то же время двум событиям, находящимся в разных точках пространства, то система отсчета, которая движется относительно первой, назначает разные времена для этих двух событий (единственное исключение - когда движение точно перпендикулярно линии, соединяющей точки этих событий).

Например, автокатастрофы в Лондоне и в Нью-Йорке являющиеся одновременными для наблюдателя на Земле, окажутся произошедшими в несколько разное время для пассажира самолета, летящем между Лондоном и Нью-Йорком. Кроме того, если два события не могут быть причинно связаны (т.е. время между событием в точке А и событием в точке В меньше времени, за которое свет проходит расстояние между А и В), то, в зависимости от состояния движения, окажется, что в одной системе отсчета автокатастрофа в Лондоне произошла первой, а в другой системе отсчета первой произошла автокатастрофа в Нью-Йорке. Однако, если события причинно связаны (между ними прошло больше времени, чем время прохождения света между А и В), порядок событий сохраняется во всех системах отсчета.

Мысленные эксперименты

Относительность одновременности событий является ключевым эффектом СТО, проявляющимся, в частности, в «парадоксе близнецов». Рассмотрим несколько синхронизированных часов, расположенных вдоль оси в каждой из систем отсчёта. В преобразованиях Лоренца предполагается, что в момент времени начала систем отсчёта совпадают: . Ниже изображена такая синхронизация отсчёта времени (на «центральных» часах) с точки зрения системы отсчёта (левый рисунок) и с точки зрения наблюдателей в (правый рисунок):

Предположим, что рядом с каждыми часами в обеих системах отсчёта находятся наблюдатели. Положив в преобразованиях Лоренца , получаем . Это означает, что наблюдатели в системе , одновременно с совпадением времени на центральных часах, регистрируют различные показания на часах в системе . Для наблюдателей, расположенных справа от точки , с координатами , в момент времени часы неподвижной системы отсчёта показывают «будущее» время: . Наблюдатели , находящиеся слева от , наоборот, фиксируют «прошлое» время часов : . На рисунках выше положение стрелок символизирует подобную разницу показаний часов двух систем отсчёта.

Эйнштейн представлял себе неподвижного наблюдателя, который был свидетелем двух молний, одновременно попадающих в оба конца движущегося поезда. Он пришел к выводу, что наблюдатель, стоящий на поезде, увидит, что молнии попадают в разное время.

Единое «настоящее», то есть часы, синхронно идущие в различных точках пространства, можно ввести только в рамках конкретной инерциальной системы отсчёта. Однако, этого нельзя сделать одновременно для двух различных систем отсчёта.

Движущаяся относительно неподвижных наблюдателей система с их точки зрения содержит рассинхронизированные в направлении движения часы, своеобразное непрерывное объединение «прошлого», «настоящего» и «будущего».

Эффекты замедления времени и относительности одновременности тесно связаны друг с другом и одинаково необходимы для расчёта ситуации, описанной в «парадоксе» близнецов.

Поезд Эйнтштейна

Вариант эксперимента Эйнштейна [1] предполагал, что один наблюдатель сидит в середине движущегося вагона, а другой стоит на платформе, в момент, когда поезд проходит мимо. В поезд одновременно попадает две молнии в разные концы вагона (одна в переднюю часть, одна в заднюю часть). В инерциальной системе стоящего наблюдателя есть три события, которые пространственно разделены, но одновременны: стоящий наблюдатель, обращенный к движущемуся наблюдателю (т.е. центр поезда), молния, ударяющая в переднюю часть вагона и молния, поражающая заднюю часть вагона.

Поскольку события размещаются вдоль оси движения поезда, их временные координаты проецируются в разные временные координаты в инерциальной системе движущегося поезда. События, которые происходили в пространственных координатах по направлению движения поезда, случаются раньше, чем события в координатах, противоположных направлению движения поезда. В инерциальной системе отсчета движущегося поезда это означает, что молния ударит перед вагоном до того, как оба наблюдателя встретятся лицом друг к другу.

Поезд и платформа

Эксперимент поезд и платформы из системы отсчета наблюдателя в поезде
Система отсчета наблюдателя, стоящего на платформе (Без учета сокращения длины)

Популярная картина для понимания этой идеи обеспечивается мысленным экспериментом, подобным тому, который был предложен Комстоком (англ.) в 1910 году[2] и Эйнштейном в 1917г.[3][1] Он также состоит из одного наблюдателя в середине скоростного вагона и другого наблюдателя, стоящего на платформе, когда поезд движется мимо.

Вспышка света излучается в центре вагона в момент, когда два наблюдателя оказываются напротив друг друга. Для наблюдателя, сидящего на поезде, передняя и задняя часть вагона находятся на фиксированных расстояниях от источника света и значит, по мнению этого наблюдателя, свет достигнет передней и задней части вагона одновременно.

С другой стороны, для наблюдателя, стоящего на платформе, задняя часть вагона приближается к точке, в которой произошла вспышка, а передняя часть вагона удаляется от нее. Поскольку скорость света конечна и одинакова во всех направлениях для всех наблюдателей, свету, движущимся к задней часть поезда, нужно преодолеть меньшее расстояние, чем свету, движущимся к передней части вагона. Таким образом, вспышки света достигнут концов вагона в разное время.

Пространственно-временные диаграммы

Пространственно-временная диаграмма в системе отсчета наблюдателя в поезде
Та же диаграмма в системе отсчета наблюдателя, который видит движущийся в право поезд

Может быть полезно визуализировать эту ситуацию, используя пространственно-временные диаграммы. Для данного наблюдателя ось t определяется как точка, продолженная вертикально во времени от начала пространственной координаты x. Ось x определяется как совокупность всех точек пространства в момент времени t=0 и продолженная горизонтально. Утверждение о том, что скорость света одинаково для всех наблюдателей, отражается путем рисования светового луча как линии под углом 45°, независимо от скорости источника относительно скорости наблюдателя.

На первой диаграмме оба конца поезда изображены серыми линиями. Поскольку концы поезда неподвижны относительно наблюдателя в поезде, эти линии являются строго вертикальными линиями, показывающими их движение во времени, но не в пространстве. Вспышка света показана в виде красных линий под углом 45°. Точки, в которых эти две световые вспышки попадают в концы поезда, находятся на диаграмме на одном уровне. Это означает, что события одновременны.

На второй диаграмме оба конца поезда, движущегося вправо, показаны параллельными линиями. Вспышка света происходит в точке ровно на полпути между двумя концами поезда и снова образует две линии под углом в 45°, выражающие постоянство скорости света. Однако на этой картине точки, на которых вспышки света попадают в концы поезда, не на одном уровне; они не одновременны.

Преобразования Лоренца

Относительность одновременности может быть продемонстрирована с использованием преобразований Лоренца, которые связывают координаты, используемые одним наблюдателем, с координатами, используемыми другим наблюдателем, находящимся в равномерном относительном движении относительно первого.

Предположим, что первый наблюдатель использует координаты, помеченные t,x,y,z, а второй наблюдатель использует координаты, помеченные t',x',y',z'. Предположим теперь, что первый наблюдатель видит второго движущимся в направлении x со скоростью v. И предположим, что координатные оси наблюдателей параллельны и что они имеют одинаковое начало координат. Тогда преобразование Лоренца выражает взаимосвязь координат:

где c - скорость света. Если два события происходят одновременно в системе отсчета первого наблюдателя, они будут иметь одинаковые значения координаты t. Однако, если они имеют разные значения координаты x (разные позиции в направлении x), то они будут иметь разные значения координаты t, и поэтому в этой системе отсчета они будут происходить в разное время. Параметр, который учитывает нарушение абсолютной одновременности - это v x/c2.

Пространственно-временная диаграмма, показывающая множество точек, рассматриваемых как одновременные неподвижным наблюдателем (горизонтальная пунктирная линия) и множество точек, рассматриваемых как одновременные наблюдателем, движущимся при v = 0,5c (пунктирная линия)

Уравнение t' = constant определяет «линию одновременности» в системе координат (x', t' ) для второго (движущегося) наблюдателя, так же как уравнение t= constant определяет «линию одновременности» для первого (стационарного) наблюдателя в системе координат (x, t ). Из приведенных выше уравнений преобразования Лоренца видно, что t' является постоянным тогда и только тогда, когда t – v x/c2 = constant. Таким образом, множество точек с постоянным t, отличаются от множества точек с постоянным t' . То есть набор событий, которые рассматриваются как одновременные, зависит от системы отсчета, используемой для их сравнения.

Графически это можно представить на пространственно-временной диаграмме тем фактом, что график множества точек, рассматриваемых как одновременные, образует линию, которая зависит от наблюдателя. В пространственно-временной диаграмме пунктирная линия представляет собой набор точек, считающихся одновременными с началом координат, наблюдателем, движущимся со скоростью v равной четверти скорости света. Пунктирная горизонтальная линия представляет собой набор точек, рассматриваемых как одновременные с началом координат стационарного наблюдателя. Эта диаграмма рисуется с использованием координат неподвижного наблюдателя (x, t ) и отмасштабирована так, что скорость света равна единице, т.е. луч света будет представлен линией в 45° от оси x. Из нашего предыдущего анализа, полагая, что v = 0,25 и c = 1, уравнение пунктирной линии одновременности составляет t – 0.25x = 0, а при v = 0, уравнение пунктирной линии одновременности есть t = 0.

В общем случае второй наблюдатель прослеживает мировую линию в пространстве-времени первого наблюдателя, описываемой как t = x/v, и набор одновременных событий для второго наблюдателя (в начале координат) описывается линией t = vx. Обратите внимание на обратное отношение угловых коэффициентов мировой линии и одновременных событий в соответствии с принципом гиперболической ортогональности.

Ускоряющиеся наблюдатели

Изоконтуры радарного времени.

В приведенном выше вычислении преобразований Лоренца используется определение расширенной одновременности (т.е. когда и где происходят события, в которых вы не участвовали), которое можно назвать как сопутствующее или "касательное к свободной системе отсчета". Это определение естественно экстраполируется на события в гравитационно-искривленном пространстве-времени и на ускоренных наблюдателей посредством использования радарного времени/расстояния, которое (в отличие от определения касательного к свободной системе отсчета для ускоренных систем) присваивает уникальное время и положение для любого события.[4]

Определение расширенной одновременности через радарное время дополнительно облегчает визуализацию того, как ускорение искривляет пространство-время для путешественников в отсутствие каких-либо гравитирующих объектов. Это проиллюстрировано на рисунке справа, в котором показаны изоконтуры радарного времени/местоположения для событий в плоском пространстве-времени, по представлению путешественника (красная траектория), движущегося с ускорением. Одной из особенностью этого подхода является то, что время и место удаленных событий не определены полностью до тех пор, пока свет от такого события не достигнет нашего путешественника.

Ссылки

  1. 1 2 Einstein, Albert (2009), Relativity - The Special and General Theory, READ BOOKS, с. 30–33, ISBN 1-4446-3762-2, <https://books.google.com/books?id=x49nkF7HYncC>, Chapter IX
  2. The thought experiment by Comstock described two platforms in relative motion. See: Comstock, D.F. (1910), "The principle of relativity", Science Т. 31 (803): 767–772, PMID 17758464, DOI 10.1126/science.31.803.767.
  3. Einstein's thought experiment used two light rays starting at both ends of the platform. See: Einstein A. (1917), Relativity: The Special and General Theory, Springer
  4. Dolby, Carl E.; Gull, Stephen F. (December 2001). “On radar time and the twin "paradox"”. American Journal of Physics. 69 (12): 1257—1261. arXiv:gr-qc/0104077. Bibcode:2001AmJPh..69.1257D. DOI:10.1119/1.1407254.

См. также

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии