WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

В математике неотрицательная матрица — это матрица, элементы которой больше или равны нулю:

Положительная матрица — это матрица, элементы которой строго больше нуля:

Любая стохастическая матрица (матрица переходных вероятностей для цепи Маркова) является неотрицательной.

Положительную матрицу не стоит путать с положительно определённой матрицей.

Матрица, которая одновременно является неотрицательной и неотрицательно определённой, называют вдвойне неотрицательной матрицей.

Собственные значения и собственные вектора квадратной положительной матрицы описываются теоремой Фробениуса-Перрона.

Обратные матрицы

Матрица, обратная любой невырожденной M-матрице, является неотрицательной матрицей. Если невырожденная M-матрица является симметричной, то полученная обратная матрица называется матрицей Стильтьеса.

Неотрицательная матрица имеет неотрицательную обратную тогда и только тогда, когда она является неотрицательной мономиальной матрицей.

Применение

Неотрицательные матрицы возникают при изучении стохастических, бистохастических матриц, а также участвуют в формулировке ряда теорем.

См. также

Матрица Метцлера

Литература

  1. Abraham Berman, Robert J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, 1994, SIAM. ISBN 0-89871-321-8.
  2. A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, 1979 (chapter 2), ISBN 0-12-092250-9
  3. R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, 1990 (chapter 8).
  4. Krasnosel'skii, M. A. Positive Solutions of Operator Equations. Groningen : P.Noordhoff Ltd, 1964. — P. 381 pp..
  5. Krasnosel'skii, M. A. Positive Linear Systems: The method of positive operators / M. A. Krasnosel'skii, Lifshits, Sobolev. Berlin : Helderman Verlag, 1990. — Vol. 5. — P. 354 pp..
  6. Henryk Minc, Nonnegative matrices, John Wiley&Sons, New York, 1988, ISBN 0-471-83966-3
  7. Seneta, E. Non-negative matrices and Markov chains. 2nd rev. ed., 1981, XVI, 288 p., Softcover Springer Series in Statistics. (Originally published by Allen & Unwin Ltd., London, 1973) ISBN 978-0-387-29765-1
  8. Richard S. Varga 2002 Matrix Iterative Analysis, Second ed. (of 1962 Prentice Hall edition), Springer-Verlag.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии