WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Граф и два его разреза. Красная пунктирная линия представляет разрез из трёх рёбер. Зелёная пунктирная линия представляет один из наименьших разрезов этого графа, состоящий только из двух рёбер[1].

Наименьший разрез графа — это минимальный в некотором смысле разрез (разбиение вершин графа на два непересекающихся множества, связанных по меньшей мере одним ребром).

Вариации

Вариации наименьшего разреза:

  • Разрез с минимальным числом рёбер среди всех разрезов в неориентированном графе. Такой разрез определяет рёберную связность графа. Алгоритм Каргера даёт эффективный рандомизированный метод поиска такого разреза.
  • Задача о наименьшем разрезе в неориентированных взвешенных графах может быть решена алгоритмом Штёра — Вагнера[en].
  • Обобщение невзвешенного и неориентированного наименьшего разреза, наименьший k-разрез, целью которого является разбиение графа на по меньшей мере k связных компонент путём удаления как можно меньшего числа рёбер.
  • Разбиение графа, семейство комбинаторных задач оптимизации, в которых граф разбивается на две или больше частей с дополнительным условием балансировки размеров разреза.
  • Разрез потока, который отделяет источник от стока и минимизирует суммарный вес дуг, направленных из части, содержащей источник, в часть, содержащий сток. Как показывает теорема Форда — Фалкерсона, вес такого разреза равен максимальному потоку, который может быть пропущен из источника в сток через данную сеть.
  • Разрез взвешенной неориентированной сети, который разделяет выделенную пару вершин и имеет минимальный вес. Система разрезов, которая решает задачу для любой пары вершин, может быть собрана в структуру, известную как дерево Гомори — Ху[en] графа.

Число наименьших разрезов

Граф с n вершинами может иметь не более различных наименьших разрезов.

См. также

Примечания

  1. 4 Min-Cut Algorithms.

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии