WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Монотонная булева функция — булева функция, которая монотонно возрастает (точнее не убывает) по каждому аргументу. Класс всех монотонных булевых функций является одним из пяти предполных классов.

Определение

Булева функция называется монотонной, если из того, что она принимает значение на некотором наборе аргументов , следует, что она принимает значение на всяком наборе аргументов , который получается из набора аргументов путём замены произвольного числа нулей на единицы[1].

Говорят, что набор предшествует набору ( не больше , меньше либо равен , ), если для всех .

Если и , то говорят, что набор строго предшествует набору (строго меньше, ).

Наборы и называются сравнимыми, если либо .

В случае, когда ни одно из этих соотношений не выполняется, наборы называются несравнимыми.

Булева функция называется монотонной, если для любых двух наборов и таких, что , имеет место неравенство .[2]

Множество всех монотонных функций алгебры логики обозначается через , а множество всех монотонных булевых функций, зависящих от переменных

См. также

Примечания

  1. Капитонова Ю. В., Кривой С. Л., Летичевский А. А. Лекции по дискретной математике. — СПб., БХВ-Петербург, 2004. — ISBN 5-94157-546-7, с 112
  2. «Журавлев Ю. И., Флёров Ю. А., Федько О. С.» Дискретный анализ. Комбинаторика. Алгебра логики. Теория графов : учеб. пособие — М. МФТИ, 2012—248 с. — ISBN 978-5-7417-0423-3

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии