Метод характеристик — метод решения дифференциальных уравнений в частных производных. Обычно применяется к решению уравнений в частных производных первого порядка, но он может быть применен и к решению гиперболических уравнений более высокого порядка.
Метод заключается в приведении уравнения в частных производных к семейству обыкновенных дифференциальных уравнений.
Для этого требуется найти кривые (именуемых характеристиками), вдоль которых уравнение в частных производных превращается в обыкновенное дифференциальное уравнение. Как только найдены обыкновенные дифференциальные уравнения, их можно решить вдоль характеристик и найденное решение превратить в решение исходного уравнения в частных производных.
Рассмотрим следующее квазилинейное уравнение относительно неизвестной функции
Рассмотрим поверхность в . Нормаль к этой поверхности задается выражением
В результате получим, что уравнение эквивалентно геометрическому утверждению о том, что векторное поле
является касательным к поверхности в каждой точке.
В этом случае уравнения характеристик могут быть записаны в виде[1]:
или же, если x(t), y(t), z(t) есть функции параметра t:
То есть поверхность образована однопараметрическим семейством описанных кривых. Такая поверхность полностью задаётся одной кривой на ней трансверсальной к векторному полю .
Рассмотрим частный случай уравнения выше, так называемое уравнение переноса (возникает при решении задачи о свободном расширении газа в пустоту):
где постоянная, а — функция переменных и .
Нам бы хотелось свести это дифференциальное уравнение в частных производных первого порядка к обыкновенному дифференциальному уравнению вдоль соответствующей кривой, то есть получить уравнение вида
где — характеристика.
Вначале мы устанавливаем
Теперь, если положить и , получим
Как видно, вдоль характеристики исходное уравнение превращается в ОДУ , которое говорит о том, что вдоль характеристик решение постоянное. Таким образом, , где точки и лежат на одной характеристике. Видно, что для нахождения общего решения достаточно найти характеристики уравнения, решая следующую систему ОДУ:
В нашем случае, характеристики — это семейство прямых с наклоном , и решение остается постоянным вдоль каждой из характеристик.
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .