Ме́ра хру́пкости — это структурно чувствительная характеристика механического поведения малодеформирующихся материалов, по численным значениям которой можно оценить основные особенности их деформирования и разрушения[1].
Рассматривая удельную (отнесенную к единице объема) энергию, затрачиваемую на деформирование и дальнейшее разрушение образцов, можно обнаружить, что для каждого материала характерно не только общее количество этой энергии W, но и соотношение составляющих её частей, а именно (см. рис.1): энергии, расходуемой на упругое деформирование (потенциальная энергия П), и энергии W, рассеиваемой (безвозвратно теряемой) при деформировании. В соответствии с этим была предложена характеристика механического поведения малодеформирующихся материалов, равная отношению удельной упругой энергии П, накапливаемой в материале к моменту его разрушения, ко всей удельной энергии, затрачиваемой на его деформирование к этому же моменту.
Эта характеристика была впервые введена в науку в 1973 году профессором Г.А. Гогоци как «мера хрупкости» [3][4][5][6][7] с присвоенным обозначением Х[6] - для неметаллических хрупких материалов, и получила дальнейшее широкое распространение в механике твердого тела.
Выражение для меры хрупкости по Рис.а может быть представлено в виде:
где ε – текущая деформация; σ=fн(ε) – функция, описывающая диаграмму деформирования материала при нагрузке от нулевой до предельной деформации εпр; σ=fр(ε) – функция, выражающая зависимость между напряжениями и деформациями при разгрузке материала от предельной деформации до остаточной εост.
В соответствии с формулой (1) численные значения меры хрупкости изменяются от 1 до 0 (диаграмма деформирования для случая χ=1 показана на рис.б)[8]
Для материалов, у которых кривая σ=fн(ε) может быть с достаточной степенью точности аппроксимирована прямой (Рис.в), формулу (1) можно записать в виде:
где σ2пр – предел прочности материала, Е – модуль упругости.
Особенностью меры хрупкости как характеристики механического поведения является то, что, во-первых, с её помощью интегрально учитываются действительные (не идеализированные) законы связи между деформациями и напряжениями, характерные для конкретного материала; во-вторых, способность материала сопротивляться разрушению. Последнее обусловлено тем, что энергетические затраты на распространение трещины пополняются за счет упругой энергии П, накопленной в материале к моменту её страгивания, а сопротивляемость материала к развитию трещин (трещиностойкость) во многом связана с теми же эффектами, которые обуславливают рассеяние энергии U (рис. а-в) при его деформировании до предельного состояния. Это объясняет утверждение, что особенности механического поведения материалов, определяемые мерой хрупкости, могут быть описаны не только выражением 1, но также и в виде отношения величин, характеризующих различие в их сопротивляемости образованию и развитию трещин [9] и, например, отношением скорости высвобождения упругой энергии деформаций Gк к j-интегралу и т. д.
Поскольку закон связи между деформациями и напряжениями обусловлен микромеханическими процессами, сопровождающими нагрузки материала и зависят от особенностей его структуры, соответственно с помощью меры хрупкости можно охарактеризовать не только макро-, но и микромеханическое поведение материалов.
С помощью меры хрупкости описываются принципиально важные особенности механического поведения малодеформирующихся материалов, которые не содержатся в других физико-механических характеристиках. Это позволило считать меру хрупкости новой практически полезной характеристикой механического поведения малодеформирующихся материалов. При ориентировочных оценках материалов приближенные значения меры хрупкости[7] могут определяться по предельным характеристикам диаграмм деформирования. Для этого выражение (1) можно записать в виде:
где η - коэффициент заполнения всей диаграммы деформирования;
ηП - коэффициент заполнения частой этой диаграммы, соответствующей потенциальной энергии П.
Приняв соотношение ηП/η равным единице можно определить меру хрупкости как:
при использовании формулы (3) нелинейные диаграммы деформирования аппроксимируются прямыми линиями,проводимыми под углом β, тангенс которого соответствует секущему модулю в момент разрушения образца (при этом тангенс α численно равен модулю упругости материала). Такой аппроксимацией вносится неточность в определение значения меры хрупкости, обусловленная особенностями деформирования каждого конкретного материала. Поэтому при практических оценках материалов значения χ′ должны использоваться с осторожностью.
Для инженерного применения меру хрупкости целесообразно определять по формуле 2, а измерения для расчета меры хрупкости наиболее желательно проводить при одноосном растяжении образцов или четырех-точечном изгибе.
Керамические и огнеупорные материалы из-за особенностей их механического поведения (степени неупругости) делятся на хрупкие - упругодеформирующиеся до разрушения и относительно хрупкие - неупругодеформирующиеся до разрушения. При этом в качестве классификационного параметра используют характеристику их механического поведения - меру хрупкости χ , что составляет для хрупких материалов χ =1, а относительно хрупких - 0<χ<1).
Механика разрушения твёрдых тел
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .