WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Матрица сопротивлений — матрица, применяемая для описания устройств СВЧ, связывающая линейной зависимостью комплексные амплитуды напряжений и силы тока в клеммных плоскостях эквивалентного многополюсника:

Устройство СВЧ как многополюсник

Описание устройства СВЧ может производиться без учёта его внутренней структуры и геометрии. Для инженерного расчёта любое линейное пассивное устройство может быть представлено в виде «чёрного ящика» — многополюсника, каждая пара клемм которого представляет определённый тип волн во всех линиях передачи, подключённых к этому устройству. На каждом входе эквивалентного многополюсника можно определить комплексные амплитуды напряжения и силы тока. Чаще всего ток и напряжение определяют через поперечные составляющие электрического и магнитного поля волны, распространяющейся в линии:

Здесь и  — собственные функции поперечных составляющих основных волн в n-входной линии. Напряжения и токи входят в нормированной форме:

[Вт½]
[Вт½]

 — характеристическое сопротивление основной волны в линии. Напряжение и ток в линии могут быть выражены через падающую и отражённую волны:

Падающая и отражённая волны также входят в нормированной форме и измеряются в Вт½.

Матричное уравнение

Представив множества токов и напряжений на всех входах многополюсника в виде векторов, можно записать матричое уравнение связи напряжений и токов:

В алгебраической форме запись приобретёт вид

Физический смысл

Чтобы выяснить физический смысл элементов матрицы сопротивлений, необходимо организовать специальный тестовый режим измерения токов и напряжений многополюсника, называемый режимом холостого хода (Х.Х.).

Смысл диагональных элементов (znn) матрицы сопротивлений станет ясен, если создать электрический ток in ≠ 0 (подключить источник тока к n-му входу многополюсника) и создать режим Х.Х. на всех прочих входах (то есть разомкнуть все прочие k = 1...N, kn входы многополюсника). В этом случае сила тока ik на k-х (разомкнутых) входах будет равна нулю, а напряжение и сила тока для n-го входа будут связаны законом Ома: un = znnin. Из выражения видно, что каждый n-й диагональный элемент матрицы рассеяния имеет тот же смысл, что и электрическое сопротивление n-го входа при условии одновременного Х.Х. на всех прочих входах.

В рассмотренном тестовом режиме напряжения на всех (n-м и k-х) входах не будут равны нулю, они будут пропорциональны силе тока in, создаваемого подключенным к n-му входу источником: uk = zknin, k = 1, ... , n, ... , N. Из этого выражения видно, что все элементы матрицы рассеяния служат коэффициентами пропорциональности между силой тока in в n-м входе и напряжением uk на k-м входе и имеют разсмерость электрического сопротивления (Ом). Диагональные элементы называют собственными сопротивлениями входов, внедиагональные — вносимыми сопротивлениями (вносимыми в k-й вход из n-го входа, первый индекс — "куда", второй — "откуда"). Эти названия подчеркивают тот факт, что в общем случае, при протекании тока по всем N входам многоволюсника, напряжение un на каждом n-м входе зависит не только от силы тока in в этом входе (un пропорционально in, коэффициент пропорциональности — собственное сопротивление znn), но и от силы тока ik во всех прочих входах (un пропорционально также и ik, коэффициент пропорциональности — вносимое сопротивление znk). То есть напряжение на каждом входе не только зависит от "собственного" источника тока, но и "вносится" (наводится, получает добавку, зависит, изменяется) за счет протекания тока во всех прочих входах в силу наличия электрических межсоединений во внутренней электрической схеме многополюсника.

Таким образом, в целом матрица сопротивлений и матричное уравнение, связывающее напряжения и токи на входах многополюсника, являются обобщением закона Ома для участка цепи (то есть для двухполюсника) на случай многополюсника.

См. также

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии