Задача о мятом рубле, или задача о салфетке Маргулиса, — задача о математике оригами, первая задача в списке задач Арнольда.
Можно ли сложить прямоугольный лист бумаги в плоскую фигуру с периметром больше, чем у исходного прямоугольника? Рвать и резать бумагу, разумеется, нельзя.
В математически точной формулировке требуется уточнить, что значит «сложить». В зависимости от этого уточнения, ответом может быть «да», «нет» или «неизвестно».
Например, если считать, что после каждого складывания лист бумаги склеивается с собой, то несложно доказать, что при каждом складывании периметр уменьшается и, в частности, его нельзя увеличить. Однако если рассмотреть сгибание и отгибание листа как показано на рисунке то легко видно, что при отгибании периметр увеличивается, хотя и остаётся меньше периметра исходного квадрата. Неизвестно, можно ли увеличить периметр, пользуясь только сгибаниями и отгибаниями.
Тем не менее, если разрешить одновременно сгибать лист вдоль нескольких складок, то увеличить периметр, оказывается, можно[1]. Подобные сложные складки распространены в оригами, и именно оригамисты первыми сумели продвинуться в решении задачи. С одной стороны, в оригами часто растягивают или сжимают бумагу, что недопустимо в математической «бумаге». С другой стороны, математическая «бумага» не имеет толщины, и даже большие «сэндвичи» можно свободно гнуть[1].
Этот вопрос часто называют фольклорным, но, по-видимому, он был впервые сформулирован Арнольдом в 1956 году[2]. На Западе задача стала известна под названием «задача о салфетке Маргулиса».
Основной шаг в частичном решении задачи был сделан оригамистами[3]. Частичные решения были предложены Крат[4], Лэнгом[5], Ященко[6]. Наиболее полное решение было представлено Тарасовым[7].
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .