Диффузио́нный слой – приповерхностные объемы материала, химический состав которых изменился в результате диффузии при химико-термической обработке (ХТО). Изменение химического состава этих объемов приводит к изменению фазового состава, структуры и свойств материала диффузионного слоя.
Важнейшим условием образования диффузионного слоя является существование растворимости диффундирующего элемента в насыщаемом металле при температуре химико-термической обработки. Диффузионные слои могут также создавать элементы, имеющие при температуре процесса малую растворимость в насыщаемом металле, но образующие с ним химические соединения.
Классификацию диффузионных слоев проводят по количеству и природе насыщающих элементов; по структуре и свойствам.
Однокомпонентные диффузионные слои получают в результате насыщения металлов и сплавов неметаллическими элементами (цементация, азотирование, борирование, силицирование …) или металлическими элементами (цинкование, хромирование, алитирование …)
По природе насыщающих элементов многокомпонентные диффузионные слои можно разделить на три группы:
На основании характера взаимодействия насыщающих элементов с насыщаемым металлом (классификация по В.И. Архарову)[1] или между собой (в насыщающей среде) (классификация по Г.В. Земскову)[2] можно прогнозировать результаты двухкомпонентной химико-термической обработки.
Насыщаемая поверхность не равновесна: не однородна по химическому составу, содержит дефекты кристаллического строения и адсорбированные атомы, её структура обладает естественной[3] и искусственной шероховатостью.
Процесс адсорбции при химико-термической обработке сложен и зависит от многих факторов: температуры, давления, состояния поверхности, природы металла и диффундирующего элемента и т.д. Кроме того, процесс адсорбции насыщающих элементов сопровождается поверхностной самодиффузией и гетеродиффузией, а в случае протекания на поверхности раздела химических реакций (обмена или диспропорционирования) - десорбцией продуктов реакции в реакционную среду.
Адсорбированные поверхностью атомы насыщающих элементов диффундируют вглубь обрабатываемого изделия. Суммарный диффузионный поток[4] при химико-термической обработке состоит из атомов насыщающих элементов (гетеродиффузия), основного металла сплава (самодиффузия), легирующих элементов сплава и примесей (гетеродиффузия). Диффузионные потоки оказывают взаимное влияние на скорость и полноту реализации процесса насыщения[5].
В настоящее время существуют две качественно отличающихся теории: 'атомная' и 'реакционная'[6].
Согласно 'атомной' теории, при химико-термической обработке фазы диффузионного слоя формируются в последовательности, определяемой изотермическим сечением диаграммы фазового состояния «металл - насыщающий элемент», при температуре обработки. Математическим выражением 'атомной' теории является многофазная (задача Стефана), в которой диффузионный массоперенос в каждой фазе описывается вторым законом Фика, а на межфазных границах ставят условие баланса диффузионных потоков (кинетика фазовых превращений в диффузионном слое не учитывается).
Теория 'реакционной' диффузии впервые была предложена В.З. Бугаковым[7]. Согласно этой теории, при контакте двух разнородных металлов (или реакционной среды и металла) на границе, в результате гетерогенных флуктуаций, образуются зародыши новой фазы - интерметаллического соединения. Возникающая фаза может занимать промежуточное положение на диаграмме фазового состояния.
При прогнозировании фазового состава диффузионных слоев и последовательности образования фаз, следует учитывать не только особенности диффузионного массопереноса в металле (или в объеме каждой фазы), но и кинетику фазовых превращений (скорость перераспределения атомов на межфазных границах, перестройки кристаллических решеток и образования центров кристаллизации новой фазы)[8].
Структура диффузионного слоя формируется в процессе выдержки при температуре химико-термической обработки, в процессе охлаждении или последующей термической обработки.
При температуре химико-термической обработки формируется либо гомогенная структура диффузионного слоя, либо неоднородная – многофазная, гетерогенная структура, состоящая из нескольких однофазных структурных зон, расположенных последовательно по мере удаления от поверхности насыщения.
Структурная зона диффузионного слоя – часть диффузионного слоя, материал которой формируется в результате фазовых превращений при ХТО. Каждая структурная зона при температуре ХТО является однофазной и отличается от других зон диффузионного слоя[9]. В процессе последующего охлаждения или термической обработки в диффузионном слое возможны фазовые превращения, характер которых зависит от режима охлаждения и устойчивости фаз, сформировавшихся при температуре химико-термической обработки.
Переходная зона – переходная структура между наиболее значимой с точки зрения эксплуатации зоной диффузионного слоя и сердцевиной.
При их формировании диффузионного слоя при ионной химико-термической обработке[10] определяющее значение имеет процесс имплантации ионов насыщающего элемента. Структура такого диффузионного слоя отличается от полученной в результате традиционной (термодиффузионной) ХТО, где значительную роль играет диффузия по границам зерен .
Толщина диффузионного слоя – кратчайшее расстояние от поверхности насыщения до сердцевины[11].
Эффективная толщина упрочненного слоя – кратчайшее расстояние от поверхности насыщения до структуры[12] с параметром (например, твердостью), равным некоторому предельному значению. Этот параметр должен гарантировать надежность и долговечность работы изделия и его задают исходя из условий эксплуатации с учетом конструктивных особенностей изделия[13].
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .