WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Диофантова пятёрка — гипотетическое множество из пяти положительных целых чисел , обладающих тем свойством, что всякое число является квадратом[1]. По состоянию на 2014 год вопрос о существовании таких пятёрок является открытой проблемой.

Диофант нашёл четвёрку рациональных чисел:

,

которые обладают этим свойством в рациональном смысле (то есть, всякое является рациональным квадратом). Позже было найдено множество из шести рациональных чисел, обладающих заданным свойством[2].

Пьер Ферма обнаружил четвёрку целых положительных чисел — , обладающую заданным свойством[1]. Эйлер смог расширить это множество добавлением рационального числа:

,

но положительное целое, сохраняющее заданное свойство, не может быть добавлено к этой четвёрке, что было доказано в 1969 году Бейкером (Baker) и Дэвенпортом (Davenport)[1].

В 2004 году хорватский математик Андрей Дуелла (Andrej Dujella) показал, что может существовать лишь конечное число диофантовых пятёрок[1].

Примечания

  1. 1 2 3 4 Andrej Dujella. There are only finitely many Diophantine quintuples // Journal für die reine und angewandte Mathematik. — January 2006. Т. 2004, вып. 566. С. 183–214. DOI:10.1515/crll.2004.003.
  2. Gibbs, Philip (1999), "A Generalised Stern-Brocot Tree from Regular Diophantine Quadruples", arΧiv:math.NT/9903035v1

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии