WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Куб и вписанная в него сфера

Вписанная сфера — сфера, находящаяся внутри многогранника и касающаяся каждой его грани. Является наибольшей сферой, полностью содержащейся внутри многогранника. Двойственна описанной сфере двойственному данному многогранника.

Интерпретации

Все правильные многогранники обладают вписанными сферами, но у большинства неправильных многогранников не все грани могут быть касательными к общей сфере, хотя определить наибольшую содержащуюся внутри многогранника сферу всё же возможно. В таких случаях понятие вписанной сферы определяется по-разному:

  • сфера, касающаяся всех граней (если такая существует);
  • сфера, касающаяся всех плоскостей, содержащих грани;
  • сфера, касающаяся заданного множества граней;
  • наибольшая сфера, помещающаяся внутрь многогранника.

Часто данные сферы совпадают, что приводит к сложностям при определении конкретных свойств, которыми должна обладать вписанная сфера.

Например, правильный малый звёздчатый додекаэдр обладает сферой, касающейся всех граней, но при этом существует большая по размеру сфера, также помещающаяся внутрь данного многогранника. Какую из сфер при этом следует считать вписанной? Ряд исследователей (Coxeter; Cundy & Rollett) считают вписанной такую сферу, которая касается всех граней. При этом архимедовы тела не имеют вписанных сфер, а двойственные архимедовым, или каталановы, тела обладают вписанными сферами. Другие исследователи дают альтернативные определения вписанных сфер.

Литература

  • Coxeter, H.S.M. Regular polytopes 3rd Edn. Dover (1973).
  • Cundy, H.M. and Rollett, A.P. Mathematical Models, 2nd Edn. OUP (1961).

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии