WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Алгебра Темперли — Либа — алгебра, при помощи которой строятся некоторые трансфер-матрицы[en]. Открыта Невиллом Темперли и Эллиотом Либом. Алгебра применяется в статистической механике, в теории интегрируемых моделей[en], имеет отношение к теории узлов и группам кос, квантовым группам и подфакторам алгебр фон Неймана.

Определение

Пусть  — коммутативное кольцо (чаще всего — поле вещественных чисел), в котором зафиксирован элемент . Алгеброй Темперли — Либа называется -алгебра образованная генераторами , подчиняющимися соотношениям Джонса:

  • при
  • при
  • при
  • при , таких что

можно представить как векторное пространство, с базисными векторами, каждый из которых представляет собой диаграмму в виде квадрата, на двух противоположных сторонах которого находятся по точек. Точки образуют n пар, каждая пара соединена кривой, и никакие две кривые не пересекаются. Пять базисных векторов выглядят следующим образом:

.

Умножение двух базисных элементов происходит соединением двух квадратов стык-в-стык, после каждый образовавшийся цикл даёт множитель δ. Например,

× = = δ .

Единичным элементом является диаграмма с n горизонтальными прямыми, а генератор  — диаграмма, в которой i-ая вершина соединена с i+1-ой, 2n − i + 1-ая точка — с 2n − i-ой точкой, а все остальные точки соединены с противоположными себе. К примеру, генераторами являются:

Слева направо: тождественный элемент (единица) и генераторы U1, U2, U3, U4.

Соотношения Джонса можно изобразить графически:

= δ

=

=

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии