WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Сет-функция — действительная числовая функция , определенная на  — множестве всех подмножеств некоторого произвольного конечного множества измеримого пространства и принимающая свои значения на числовой оси .


Аддитивная сет-функция — сет-функция, для которой выполняется равенство:

для любых подмножеств и .


Мера — аддитивная сет-функция, для которой верно: .

Значение любой меры на произвольном подмножестве можно представить в виде суммы её значений на моноплетах :

.

Считается, что .

Литература

  • Lovasz L. (1983) Submodular functions and convexity. In: A. Bachem, M. Grotschel, and B.Korte, editors, Mathematical Programming — The State of the Art}, Springer-Veriag, 235—257.
  • Fujishige S. (1984) Theory of submodular programs, A Fenchel-type min-max theorem and subgradients of submodular functions, Mathematical Programming, 29, 142—155.
  • Foldes Stephan, Hammer Peter L. (2002) Submodularity, Supermodularity, Higher Order Monotonicities. Rutcor Research

Report, 10-2002, March, 2002.

  • Hammer, P.L., and S.Rudeanu} (1968) Boolean Methods in Operation Research and Relared Areas, Springer-Verlag, Berlin, Heidelberg, New York.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии