WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

В математике класс Z-матриц составляют те матрицы, чьи внедиагональные элементы меньше или равны нулю, то есть элементы Z-матрицы имеют вид:

Данное определение в точности совпадает с определением взятой со знаком минус матрицы Метцлера, или квазиположительной матрицы. Поэтому иногда в литературе Z-матрицы называют квазиотрицательными матрицами, но только в том контексте, когда они рассматриваются вместе с квазиположительными.

Матрица Якоби конкурирующих динамических систем по определению является Z-матрицей. Аналогично, если матрица Якоби коллективной динамической системы является Z-матрицей, взятой со знаком минус.

Близкими к классу Z-матриц являются L-матрицы, M-матрицы, P-матрицы, матрицы Гурвица и матрицы Метцлера. L-матрицы имеют дополнительное свойство, что все их диагональные элементы больше нуля. M-матрицы имеют несколько эквивалентных определений, одно из которых: Z-матрица называется M-матрицей, если она невырождена и обратная к ней неотрицательна. Все матрицы, являющиеся одновременно как Z-матрицами, так и L-матрицами, это невырожденные M-матрицы.

См. также

Литература

  • Huan T., Cheng G., Cheng X. (1 April 2006). “Modified SOR-type iterative method for Z-matrices”. Applied Mathematics and Computation. 175 (1): 258—268. DOI:10.1016/j.amc.2005.07.050.
  • Saad, Y. Iterative methods for sparse linear systems. — 2nd. — Philadelphia, PA. : Society for Industrial and Applied Mathematics. — P. 28. ISBN 0-534-94776-X.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии