WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

TTL-экспонометр (англ. Through the lens, TTL: «через объектив») — разновидность встроенного экспонометра, измеряющего яркость снимаемой сцены непосредственно через съёмочный объектив фотоаппарата или кинокамеры[1]. В советской литературе по фотографии некоторое время использовалось понятие «внутреннее светоизмерение», в дальнейшем вытесненное международным термином TTL.[2]

Применяется для определения правильной экспозиции, главным образом, в однообъективных зеркальных фотоаппаратах и кинокамерах с зеркальным обтюратором, однако может использоваться и с другими типами видоискателя. По сравнению с экспонометрами, оснащёнными внешним фотоэлементом, главным достоинством такого принципа измерения считаются его высокая точность, получаемая за счёт автоматического учёта большинства факторов, влияющих на экспозицию, в том числе кратности применённых светофильтров, эффективной светосилы объектива, его фокусного расстояния, выдвижения и прочих обстоятельств[3].

К недостаткам TTL-экспонометра можно отнести невозможность измерения непосредственно в момент фотосъёмки при поднятом зеркале, что имеет значение при автоматическом управлении экспозицией и вносит ошибки при быстрых изменениях освещённости[4]. Кроме того, TTL-экспонометр пригоден только для измерения яркости объектов съёмки и не даёт возможности определять освещённость сцены.

Первый фотоаппарат с TTL-экспонометром «Topcon RE-Super» (1963)

История

Первая сменная пентапризма Photomic T с TTL-экспонометром для камеры Nikon F (1965)

Принцип измерения экспозиции по свету, прошедшему через объектив впервые запатентован в 1935 году компанией Zeiss Ikon для двухобъективного зеркального фотоаппарата «Contaflex 860/24»[5]. Патент DE 722135(C) на способ заобъективного измерения в однообъективных зеркальных фотоаппаратах, поданный в июле 1939 года, зарегистрирован в 1942 году в нацистской Германии, и из-за войны не был воплощён «в металле»[6][7]. Селеновый фотоэлемент в форме рамки предполагалось размещать вокруг фокусировочного экрана со стороны зеркала. Практически одновременно компанией Arnold & Richter подан патент на заобъективный экспонометр для киносъёмочных аппаратов с зеркальным обтюратором, опубликованный лишь после войны[8].

Широкое внедрение TTL-экспонометров началось только после появления полупроводниковых фоторезисторов и фотодиодов, значительно более компактных чем селеновые фотоэлементы: размещение последних внутри оптического тракта связано с большими трудностями. В 1960 году на выставке Photokina компания Asahi Optical Co. представила прототип фотоаппарата «Pentax Spotmatic» с точечным заобъективным измерением[5]. Однако, первым фотоаппаратом с TTL-экспонометром считается «Topcon RE-Super», запущенный в серийное производство в 1963 году японской компанией Tokyo Kogaku KK[6][9]. Через год начат выпуск доработанного «Pentax Spotmatic», а в 1965 году заобъективный замер появился в сменной пентапризме Photomic T для камеры «Nikon F», до этого оснащавшейся внешним фотоэлементом[10][11]. Этот тип призмы стал первым в мире сменным видоискателем, оснащённым TTL-экспонометром[12]. В настоящее время все зеркальные фотоаппараты оснащаются TTL-экспонометрами сопряжённой конструкции, то есть непосредственно связанной с органами управления экспозицией и экспоавтоматикой.

Конструкция

Эффективность измерения экспозиции и светопропускание видоискателя зависит от расположения фоторезисторов TTL-экспонометра. При этом, яркость изображения в зеркальном видоискателе является одной из важнейших характеристик фотоаппарата или кинокамеры, поскольку от неё зависит точность фокусировки, затруднённой при недостатке освещения. В первом фотоаппарате с TTL-экспонометром «Topcon RE-Super» светочувствительный CdS фоторезистор располагался в зеркале, некоторые участки которого были полупрозрачны. При этом терялось не более 7 % света, остальная часть которого попадала в видоискатель[13]. Однако, наиболее широкое распространение получили схемы без разделения светового потока, одной из которых стало расположение фоторезисторов у окулярной грани пентапризмы[14][15]. Первыми TTL-экспонометрами такой конструкции оснащались фотоаппараты компании Asahi Optical, запатентовавшей расположение сенсоров в 1967 году[16]. В дальнейшем устройство стало общепринятым для большинства иностранных производителей[17]. Такая конструкция не требует отбора света: сенсоры получают световой поток, проходящий мимо окуляра. Встречаются конструкции, в которых светочувствительные элементы расположены у верхних граней пентапризмы, отбирая боковые пучки света, не попадающие в окуляр. Такое устройство пентапризмы было, например, у фотоаппаратов «Minolta XK» и «Leica R[18].

Некоторые системы TTL-измерения осуществляли отбор света из оптического тракта видоискателя, снижая его светосилу и затрудняя визирование и фокусировку. Например, в советских фотоаппаратах «Зенит-TTL» и «Зенит-19» отбор света осуществлялся от передней полупрозрачной грани пентапризмы[19]. В результате, видоискатель этих фотоаппаратов оказался значительно «темнее», чем у предшественников «Зенит-Е» и «Зенит-ЕМ» с внешним фотоэлементом экспонометра. Аналогичная проблема существовала в киносъёмочных аппаратах, отбор света в которых осуществлялся также в оптическом тракте сопряжённого видоискателя[20], как правило, призмами с полупрозрачной зеркальной гранью, часто предназначенными также для телевизира[21][22]. Некоторое распространение получило расположение сенсора у торца коллективной линзы («Canon F-1»). Такая схема наиболее выгодна в камерах со съёмной пентапризмой: экспонометр остаётся работоспособным независимо от типа установленного видоискателя.

Те же преимущества даёт решение, впервые использованное в 1968 году в камерах «Leicaflex SL», когда фоторезистор располагается под основным полупрозрачным зеркалом, улавливая свет, отражаемый вспомогательным маленьким зеркалом[23]. Такое устройство, характерное также для фотоаппаратов «Nikon F3», «Pentax LX» и «Olympus OM-3», позволяет измерять тем же сенсором свет, отраженный от плёнки во время экспозиции, в том числе фотовспышку. Однако, полупрозрачное зеркало снижает световую эффективность видоискателя. Для повышения яркости изображения в таких камерах часто используется сложная мозаичная микроструктура полупрозрачного участка зеркала[24]. В современной цифровой аппаратуре расположение фотодиода под зеркалом практически не встречается, поскольку эта часть оптического тракта занята модулем автофокуса, а свет вспышки измеряется другим способом.

Расположение фоторезисторов при заобъективном светоизмерении
В подвижном полупрозрачном зеркале
Topcon RE-Super
На полупрозрачной грани пентапризмы
Зенит-TTL, Зенит-19
На окулярной грани пентапризмы
Pentax Spotmatic, Nikon FM, Canon EOS, Зенит-12сд
У торца коллективной линзы
Canon F-1
Под вспомогательным зеркалом
Leicaflex, Nikon F3, Pentax LX, Olympus OM-3
Напротив фотоплёнки
Olympus OM-2
На откидном рычаге за полупрозрачным зеркалом
Canon Pellix

Дальнейшее развитие экспонометров и появление точечного и оценочного режимов измерения привели к усложнению конструкции фоторезисторов и появлению новых схем их расположения, не снижающих яркость видоискателя. Многозонные матричные фоторезисторы, осуществляющие оценочный замер, в большинстве случаев устанавливаются у окулярной грани пентапризмы и оснащаются микрообъективом, строящим уменьшенное изображение кадра на светочувствительной поверхности. Такая схема с одним многозонным фоторезистором, расположенным выше окуляра, реализована во всех камерах серии «Canon EOS»[25]. Этот же светочувствительный элемент используется для точечного режима измерения. Измерение света, отражённого от плёнки осуществляется другим фоторезистором, расположенным под зеркалом, рядом с модулем автофокуса[* 1]. Подобное расположение светочувствительных ячеек использовано в камере «Nikon F4». Отличие заключается в двух многозонных сенсорах, расположенных по бокам от окуляра для осуществления оценочного замера[26]. Многие зеркальные фотоаппараты оснащаются несколькими фоторезисторами, расположенными в разных местах оптического тракта для измерения экспозиции в различных режимах.

Цифровые зеркальные фотоаппараты, поддерживающие режим Live View, а также беззеркальные камеры для измерения экспозиции используют данные со светочувствительной матрицы. Измерение экспозиции через съёмочный объектив возможно и в дальномерных фотоаппаратах. Для этого могут применяться фоторезисторы, установленные на рычаге, убирающемся перед срабатыванием затвора, как это сделано в камере «Leica M5»[27]. В СССР был разработан фотоаппарат «ФЭД-6 TTL» с таким же принципом светоизмерения, однако серийно он не выпускался[28]. Фоторезистор на убирающемся рычаге использовался также в некоторых зеркальных фотоаппаратах, например, «Canon Pellix» с неподвижным полупрозрачным зеркалом[29].

Два способа измерения

Байонет К, механическая передача значений диафрагмы в камеру
(фотоаппарат «Зенит-АМ» с объективом «МС Гелиос-44К-4»).
Кольцо установки диафрагмы 3 связано с поводком 2, который перемещает поводок 1. Цифрой 4 отмечен привод «прыгающей» диафрагмы, когда объектив снят диафрагма закрыта до рабочего значения.

Существуют две разновидности технологии TTL: с измерением экспозиции при рабочем значении диафрагмы или при полностью открытом относительном отверстии[30]. Первый способ (англ. Stop Down Metering) обладает меньшей точностью, поскольку на фоторезистор через закрытую диафрагму попадает меньше света. Техническая реализация этой технологии наиболее проста и используется для объективов, не оснащённых прыгающей диафрагмой, а также в дальномерных фотоаппаратах и киносъёмочной аппаратуре. Первые фотоаппараты с TTL-экспонометром, например «Pentax Spotmatic» и «Canon Pellix» измеряли экспозицию при рабочем значении прыгающей диафрагмы, закрываемой при помощи репетира, совмещённого с кнопкой замера[11]. Подавляющее большинство советской кинофотоаппаратуры оснащалось TTL-экспонометрами, измеряющими экспозицию таким же способом.

Второй способ измерения (англ. Full Aperture Metering) считается наиболее совершенным, поскольку в этом случае сенсоры работают в более выгодном световом режиме, обеспечивая высокую точность даже при слабом освещении. Кроме того, измерение может происходить непрерывно, не требуя закрытия диафрагмы для его запуска. Однако, при этом необходима передача установленного значения прыгающей диафрагмы и светосилы объектива в экспонометрическое устройство, усложняя оправу и её присоединение к камере. Впервые такой принцип измерения реализован в камерах «Topcon RE-Super» и «Nikon F» за счёт механической связи объектива с экспонометром[31]. В 1966 году аналогичное сопряжение с экспонометром появилось в объективах новой версии байонета Minolta SR, а в 1971 году возможность измерения при открытой диафрагме получил байонет Canon FD. Появившийся в 1974 году байонет К также предусматривал механическую передачу отношения установленной диафрагмы к светосиле. В 1977 году Nikon стандартизировал новую систему сопряжения AI (англ. Automatic maximum aperture Indexing), которая не требовала сложной процедуры передачи светосилы объектива в экспонометр. Эта же система применялась в отечественных фотоаппаратах «Киев-20» и «Киев-19М», выпуск которых был ограничен. В более современных системах, например Canon EF, передача происходит через электрические контакты. Все современные зеркальные фотоаппараты оснащаются TTL-экспонометрами, измеряющими экспозицию при полностью открытой диафрагме.

Влияние фокусировочного экрана и окуляра

При размещении фоторезисторов в пентапризме точность измерения зависит от светопропускания и конструкции фокусировочного экрана, линза Френеля которого рассчитывается с учётом расположения сенсоров[15]. Поэтому, при использовании сменных экранов с различными оптической силой и светорассеянием, эти факторы необходимо учитывать. В большинстве профессиональных камер для этого используется ручной ввод экспокоррекции, величина которой определяется для каждого типа экрана по таблицам или документации самого экрана. Некоторые фотоаппараты автоматически переключают экспонометр в зависимости от типа экрана, оснащаемого сигнальными выступами.

Большинство типов TTL-экспонометров чувствительны к свету, проникающему через окуляр[14]. Для устранения ошибок измерения профессиональные фотоаппараты оснащаются окулярной шторкой, перекрывающей посторонний свет при съёмке со штатива или в других ситуациях, когда визирование не требуется и окуляр не заслонён глазом фотографа. Любительские камеры часто оснащаются специальным резиновым колпачком, носимым на ремне камеры и надевающимся на оправу окуляра.

TTL OTF

Рисунок на первой шторке затвора камеры Olympus OM-2, отражающий свет на фоторезистор

Кроме традиционных систем TTL-экспонометрии, измеряющих свет через зеркальный видоискатель, существуют системы, измеряющие свет, отражённый от эмульсии фотоплёнки во время экспозиции. Общепринятое название таких систем — TTL OTF (англ. Off The Film)[32]. Этот принцип разработал конструктор компании Olympus Йошигиса Мэйтани и впервые применил в модели OM-2, представленной в 1974 году на выставке Photokina[33][34]. После подъёма зеркала светочувствительный сенсор начинает измерение интенсивности света, отражённого от плёнки и первой шторки затвора, на которую нанесён сгенерированный компьютером рисунок. Светоотражающая шторка использовалась для измерения непрерывного освещения по системе ADM (англ. Auto Dynamic Metering), с помощью которой реализован режим приоритета диафрагмы, работающий в реальном времени. Это позволяет учитывать мгновенные изменения экспозиции непосредственно в момент съёмки, повышая точность экспонирования. Для предварительной оценки экспопары будущего снимка в пентапризму встроены фотодиоды, работающие по классической схеме TTL[34]. Аналогичный принцип измерения реализован в камере Pentax LX, где фотодиод предварительного замера располагался в другом месте тракта[35].

Измерение экспозиции по технологии TTL OTF даёт некоторый разброс результатов, неизбежный из-за различной отражающей способности разных типов фотоматериалов[36]. В большинстве случаев он не превышает половины ступени, но отдельные сорта плёнок одноступенного процесса Polaroid оказывались вообще непригодными для такой экспонометрии, поскольку имели почти чёрную окраску эмульсионного слоя. К подобным системам можно отнести экспонометры некоторых дальномерных камер, например, «Leica M6», когда фоторезистор предварительно измеряет свет, отражённый от белого пятна, нанесённого на первую шторку затвора. Измерение света, отражённого от киноплёнки, выполняется также в некоторых киносъёмочных аппаратах, например, «Aaton 7 LTR»[37]. Однако, наибольшее распространение система TTL OTF получила для измерения света фотовспышки в плёночных фотоаппаратах. Первой системной вспышкой, оснащённой экспозиционной автоматикой TTL OTF, стала «Olympus Quick Auto 310» для фотоаппарата «Olympus OM-2»[34].

Измерение света вспышки

Из-за срабатывания вспышки в момент, когда зеркало поднято, непосредственное измерение её света основной системой TTL через зеркальный видоискатель невозможно. Поэтому в плёночных камерах отдельная система OTF измеряет свет вспышки, отражённый от плёнки[36]. При достижении правильной экспозиции импульс прерывается тиристорным ключом[38].

В цифровых фотоаппаратах такая технология пригодна в меньшей степени из-за малой отражательной способности большинства матриц. Современные цифровые системы используют сенсор основного экспонометра и предварительную вспышку малой мощности, излучаемую в момент, предшествующий подъёму зеркала. Интервал между предварительным и основным импульсами так мал, что оба воспринимаются глазом, как один. Исключение составляют случаи использования синхронизации по второй шторке, когда предварительный и основной импульсы отчётливо различимы. На основании данных, полученных в результате измерения света TTL-системой, вычисляется мощность вспышки, необходимая для получения правильно экспонированного снимка. В некоторых случаях излучается не один, а несколько предварительных импульсов. Такой же предварительный импульс излучается вспышкой при нажатии кнопки экспопамяти (англ. AE-lock). В этом случае осуществляется предварительный расчёт необходимой мощности основной вспышки, которая происходит сразу же после нажатия на спусковую кнопку.

Разные производители фотоаппаратуры используют свои вариации этой технологии, называемые по-разному, но основанные на одинаковых принципах. В системных вспышках Canon Speedlite эта технология получила название E-TTL, впоследствии усовершенствованная и переименованная в E-TTL II. Nikon называет собственную систему с аналогичным принципом действия i-TTL[39]. Торговое название P-TTL присвоено технологии измерения экспозиции фотовспышки в цифровых фотоаппаратах Pentax. В конечном счёте, все эти системы основываются на косвенных данных соотношения отражённого света предвспышки и мощности основного импульса, вычисляемых экспериментально каждым производителем. Поэтому, системные вспышки одних цифровых фотосистем не совместимы с камерами других.

Большинство современных систем вспышечной экспонометрии кроме интенсивности отражённого света предварительной вспышки учитывают и другие факторы, например, дистанцию до главного объекта съёмки[36]. Это позволяет повысить точность экспонирования сюжетов, протяжённых в глубину и с несколькими объектами на разных расстояниях. Такая технология использует данные системы автофокуса, поскольку в большинстве случаев фокусировка производится на сюжетно важный объект. В этом случае при съёмке объекта, расположенного на удалённом фоне, правильную экспозицию получит главный объект, поскольку приоритет отдаётся дистанции наводки, а не отражённому свету. При обычном замере, не учитывающем расстояние, объект съёмки оказался бы передержанным, поскольку удалённый фон отражает мало света. Название технологии отличается у разных производителей: Nikon присвоил ей торговую марку 3D matrix metering, а у Canon такой же принцип включён в спецификацию E-TTL II.

Наиболее совершенные системы позволяют осуществлять автоматическое регулирование света нескольких вспышек, дистанционно управляемых от системы TTL-измерения камеры[39]. При этом команды на начало и прекращение импульса каждой вспышки передаются специальным кодом при помощи инфракрасного излучения. В таких системах для измерения экспозиции также используются предварительные импульсы всех вспышек, участвующих в съёмке.

Советская аппаратура с TTL-экспонометрами

«Зенит-TTL» — самый известный советский фотоаппарат с системой экспонометрии TTL

В СССР разработки систем заобъективного измерения экспозиции начались во второй половине 1960-х годов, и впервые TTL-экспонометр использован в 16-мм киносъёмочных аппаратах серии «Красногорск». В первой половине 1970-х начато серийное производство малоформатных однообъективных зеркальных фотоаппаратов с TTL-экспонометром: «Зенит-16» (КМЗ, с 1972) и «Киев-15» (завод «Арсенал», с 1973), которые выпускались ограниченными партиями[40].

Самой известной советской камерой с таким экспонометром стал малоформатный «Зенит-TTL» (КМЗ, с 1977), название которого отражает способ измерения. Всего изготовлено 1 632 212 экз. на КМЗ и более 1 миллиона на БелОМО[41].

«Киев-6С TTL» (завод «Арсенал», с 1978 г.) и «Киев-88 TTL» (с 1979 г.) — первые советские среднеформатные однообъективные зеркальные фотоаппараты с несопряжённым TTL-экспонометром в съёмной пентапризме. Автоматический среднеформатный однообъективный зеркальный фотоаппарат «Киев-90» выпущен в малом количестве.

Дальномерный фотоаппарат «ФЭД-6 TTL» (Харьковский машиностроительный завод «ФЭД») серийно не выпускался.

В 8-мм любительских кинокамерах TTL-экспонометр в СССР впервые применён в аппарате «Кварц-1×8С-1» (КМЗ, с 1969) и разработанном на его основе «Кварц-1×8С-2» (с 1974).[42]

См. также

Примечания

  1. В цифровых фотоаппаратах этот сенсор отсутствует

Источники

  1. Общий курс фотографии, 1987, с. 128.
  2. Фёдор Лисицын. За пределами одной пятисотой. История фотоаппаратов КМЗ. Dreamwidth. Проверено 3 июля 2013.
  3. Краткий справочник фотолюбителя, 1985, с. 61.
  4. Фотоаппараты, 1984, с. 94.
  5. 1 2 Фотокурьер №5, 2006, с. 4.
  6. 1 2 Фотомагазин №5, 1997, с. 29.
  7. Nuechterlein Karl. Spiegelreflexkamera mit Belichtungsmesser (англ.). Patent DE 722135(C). Ihagee Camerawerk AG (2 July 1942). Проверено 7 октября 2013.
  8. Arnold August. Filmbetrachtungseinrichtung fuer Spiegelreflexkameras (англ.). Patent DE934930 (C). Arnold & Richter KG (7 June 1942). Проверено 7 октября 2013.
  9. Modern Photography's Annual Guide to 47 Top Cameras: Beseler Topcon Super D (англ.) // Modern Photography : журнал. — 1969. No. 12. P. 91. ISSN 0026-8240.
  10. Nikon F Metering Prisms and Meters (англ.). Modern Classic SLRs Series. Photography in Malaysia. Проверено 4 марта 2013.
  11. 1 2 Фотокурьер №6, 2006, с. 4.
  12. Debut of Nikon F (англ.). Camera Chronicle. Nikon. Проверено 29 января 2013. Архивировано 2 февраля 2013 года.
  13. Фотокурьер №5, 2006, с. 11.
  14. 1 2 Советское фото, 1978, с. 43.
  15. 1 2 Фотоаппараты, 1984, с. 88.
  16. Toru Matsumoto. Reflex camera with incorporated photoelectric element (англ.). Patent US3324776. United States Patent Office (13 June 1967). Проверено 7 октября 2013.
  17. Jason Schneider. Our 10 Favorite Film Cameras of All Time (англ.). Classic Camera Reviews. журнал «Shutterbug» (10 December 2015). Проверено 6 февраля 2016.
  18. Viewfinders (англ.). Minolta X-1/XM/XK. The Rokkor Files. Проверено 9 апреля 2013. Архивировано 17 апреля 2013 года.
  19. Устройство и разборка Зенита-19, 1986, с. 44.
  20. Киносъёмочная техника, 1988, с. 45.
  21. Гордийчук, 1979, с. 75.
  22. Артишевская, 1990, с. 81.
  23. Лейкафлекс, 1976, с. 42.
  24. Nikon F3 — History & Background (англ.). Modern Classic SLRs Series. Photography in Malaysia. Проверено 26 февраля 2013.
  25. Canon EOS-1N — the metering system deployed (англ.). Canon EOS-1N Series AF SLR camera. Photography in Malaysia. Проверено 3 апреля 2013. Архивировано 5 апреля 2013 года.
  26. Nikon F4 — metering system (англ.). Modern Classic: Nikon F4. Photography in Malaysia. Проверено 3 апреля 2013. Архивировано 5 апреля 2013 года.
  27. Leica M5. Клуб «Дальномер» (17 июня 2010). Проверено 3 февраля 2013. Архивировано 11 февраля 2013 года.
  28. А. Резвый. «Зоркий-4» с системой TTL (рус.) // «Советское фото» : журнал. — 1984. № 11. ISSN 0371-4284.
  29. Шульман, 1968, с. 38.
  30. Фотография: Техника и искусство, 1986, с. 63.
  31. Фотокурьер №5, 2006, с. 5.
  32. Аббревиатура в фототехнике, 1990, с. 43.
  33. Борис Бакст. Безусловный лидер эры ручного фокуса. LiveJournal (14 мая 2012). Проверено 27 января 2013. Архивировано 2 февраля 2013 года.
  34. 1 2 3 Система ОМ. продолжение пути (рус.) // «Фотокурьер» : журнал. — 2007. № 7—8. С. 2.
  35. Борис Бакст. Pentax LX. Статьи о фототехнике. Фотомастерские РСУ (11 февраля 2011). Проверено 23 июня 2014.
  36. 1 2 3 TTL-управление. Системные фотовспышки. Фототест (17 февраля 2011). Проверено 5 февраля 2013. Архивировано 11 февраля 2013 года.
  37. Артишевская, 1990, с. 256.
  38. Фотомагазин №6, 1997, с. 40.
  39. 1 2 The Nikon Creative Lighting System (англ.). Digital Camera Home. Imaging Resource (31 July 2006). Проверено 3 февраля 2013.
  40. 1200 фотоаппаратов из СССР, 2009, с. 477.
  41. Т.В. Синельникова. Серийный выпуск фотоаппаратов. Архивы. Zenit camera. Проверено 2 июня 2013. Архивировано 6 июня 2013 года.
  42. Кинокамеры семейства «Кварц».

Литература

  • С. Афанасьев. Что «видит» экспонометр системы TTL (рус.) // «Советское фото» : журнал. — 1978. № 10. С. 42, 43. ISSN 0371-4284.
  • Гордийчук О. Ф., Пелль В. Г. Раздел II. Киносъёмочные аппараты // Справочник кинооператора / Н. Н. Жердецкая. М.: «Искусство», 1979. — С. 68—142. — 440 с.
  • Н. Д. Панфилов, А. А. Фомин. Краткий справочник фотолюбителя. — М.,: «Искусство», 1985. — С. 55—62. — 367 с.
  • Саломатин С. А., Артишевская, И. Б., Гребенников О. Ф. 4. Зарубежная киносъёмочная аппаратура // Профессиональная киносъёмочная аппаратура / Т. Г. Филатова. — 1-е изд. — Л.,: Машиностроение, 1990. — С. 240—257. — 288 с. ISBN 5-217-00900-4.
  • Суглоб В. П. 1200 фотоаппаратов из СССР. — Минск,: «Медиал», 2009. — С. 477—479. — 656 с. ISBN 978-985-6914-10-5.
  • В. Федай. Устройство и разборка «Зенита-19» (рус.) // «Советское фото» : журнал. — 1986. № 5. С. 44, 45. ISSN 0371-4284.
  • Фомин А. В. Глава VI. Фотосъёмка // Общий курс фотографии / Т. П. Булдакова. — 3-е. — М.,: «Легпромбытиздат», 1987. — С. 124—130. — 256 с. 50 000 экз.
  • Андрей Шеклеин. Режимы работы современной вспышки: возможности и ограничения (рус.) // «Фотомагазин» : журнал. — 1997. № 6 (19). С. 39—42. ISSN 1029-609-3.
  • М. Шульман. Методы точного измерения экспозиции (рус.) // «Советское фото» : журнал. — 1968. № 1. С. 37, 38. ISSN 0371-4284.
  • М. Я. Шульман. Фотоаппараты / Т. Г. Филатова. — Л.,: «Машиностроение», 1984. — 142 с.
  • Ihagee и её Exakta (рус.) // «Фотомагазин» : журнал. — 1997. № 5 (18). С. 28—30. ISSN 1029-609-3.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии