Эта статья или раздел содержит незавершённый перевод с иностранного языка. |
CalculiX | |
---|---|
![]() | |
Тип | Метод конечных элементов |
Разработчик | Гидо Донт, Клаус Виттиг |
Написана на | Си |
Операционная система | Linux, Windows |
Последняя версия | 2.11 (2016) |
Лицензия | GPL |
Сайт | calculix.de |
CalculiX — открытый, свободный программный пакет, предназначенный для решения линейных и нелинейных трёхмерных задач механики твёрдого деформируемого тела и механики жидкости и газа с помощью метода конечных элементов. Распространяется под лицензией GNU General Public License. Авторы программы Guido Dhondt (модуль CCX — решатель) и Klaus Wittig (модуль CGX — пре-, постпроцессор) работают в холдинге MTU Aero Engines[en], производящем двигатели для самолётов. Изначально создавался для Linux, в настоящее время существуют сборки для Windows и MacOS. CalculiX входит в состав дистрибутива CAELinux.
CalculiX является мощным инструментом анализа, который предоставляет пользователю полный контроль над процессом анализа благодаря гибкости настройки конфигурации (прежде всего в исходниках). Разновидности решаемых задач, покрывающих большинство областей МКЭ, возможность изменять любые внутренние переменные по желанию пользователя.
Бегло взглянуть на возможности CalculiX позволяет фрагмент модели турбореактивного двигателя в карточке программы. Модель построили в начале 90-х гг. Andreas Funke и Klaus Wittig. КЭ-модель позволила определить скорость зажигания и верхнюю частоту вращения, соответствующую низкой усталости и ползучести. Дополнительно был проведён анализ на собственные частоты для оценки возможного резонанса лопаток. Модель, созданная циклическим вращением, посечена 20-узловыми квадратными редуцированными элементами. Материал компрессора — литьевой алюминиевый сплав AlSi — C355, турбина выполнена из термопрочного сплава Inco 713C. Оба нагружены центростремительными силами.
Препроцессор генеририрует данные как для CCX, так и CFD-данные для duns, ISAAC, OpenFOAM, а также входные input-файлы для коммерческих решателей NASTRAN, ANSYS, Abaqus, некоммерческого решателя code-aster. Препроцессор в состоянии генерировать сетку из файлов STL и др.
Существует отдельная сборка с патчем, задействующим CUDA и пост/препроцессор ParaView.[1][2][3] С дистрибутивом CAELinux поставляется пакет Calculix Wizard для переброски проекта из Salome в формат CCX. В Salome подготавливается необходимая геометрия и сетка, при необходимости устанавливают граничные условия и контактные ограничения.[3] Близкими возможностями обладает пакет CalculiXForWin. Свежий лаунчер для Win32 и Linux 32/64[4]. Отдельно есть возможность скомпилировать ССХ для Android или настроить удалённый сервер на Debian[5].
Документация поставляется непосредственно с исходниками, вместе с пакетом bConverged для Windows, и с пакетом CalculiXForWin[6]. На видеохостинге YouTube лежат обучающие видеоролики[7]. На форуме dwg.ru есть документация и статьи с обучающими примерами на русском. Техподдержка по возникающим вопросам проводится непосредственно разработчиками и активным сообществом на официальном канале https://groups.yahoo.com/neo/groups/CALCULIX/info Верификация результатов термального анализа: http://angliaruskin.openrepository.com/arro/handle/10540/337179 (недоступная+ссылка) Верификация контактных задач: https://aaltodoc.aalto.fi/bitstream/handle/123456789/12665/master_Hokkanen_Jaro_2014.pdf Сверка результатов прочностного анализа присутствует в статьях на форуме dwg.ru, а также в файлах справки CalculiXForWin.
Программа использует библиотеку openGL для визуализации и библиотеку glut для управления окном и обработки событий.
Пользовательский интерфейс CalculiX позволяет создавать геометрическую модель, строить сетку, задавать ограничения и нагрузки, а также проводить постобработку. Хотя он включает область графического дисплея с возможностью выполнения действий с КЭ-моделью при помощи мышки, большинство работы предпочтительно выполнять при помощи ввода команд с клавиатуры. Поэтому следует знать названия и синтаксис каждой команды, или по меньшей мере штудировать справку. Несмотря на обилие документации работа с помощью клавиатурных команд не сложна, а управляемость позволяет создавать пользователям свои собственные функции, например для манипуляции данными полученных результатов или для перезаписи их в определённый пользователем формат.
CGX позволяет вводить данные о геометрии либо в пакетном виде (из файла исходных данных), либо в интерактивном режиме.
Геометрия задается с помощью следующих основных команд:
Таким образом, создание расчетной области в терминах CalculiX GraphiX содержит следующие этапы:
После того, как получена геометрия, определены внешние поверхности, производится дискретизация пространства (создание сетки), результаты которой сохраняются в файл.
После решения задачи в CCX результаты могут быть визуализированы вызовом CGX. Наиболее частые команды в постпроцессоре представлены в выпадающем меню: НДС, создание анимации статического нагружения и динамической задачи, история нагружения, облако точек, построение сечения, увеличение и вращение модели и т. д.
• fbd-формат(r/w), этот формат состоит из набора команд, представленных в разделе «Commands» и в основном используется для хранения геометрической информации такой, как точки, линии, поверхности и тела. Но он также может быть использован для формирования пакетного задания на расчет с использованием доступных команд.
• step-формат(r), поддержка формата основана на декомпиляции некоторых cad-файлов. В настоящее время поддерживаются только точки и некоторые типы линий.
• stl-формат(r/w), данный формат описывает геометрическую форму с использованием одних только треугольников (смотри описание команды чтения для работы с ребрами, сформированными NETGEN).dges сформированных с помощью NETGEN).
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .