WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Теорема Штейнера — Лемуса — теорема геометрии треугольника. Известна как пример с виду простого утверждения, который не имеет простого классического доказательства, хотя есть несложное аналитическое доказательство.

Формулировка

Если в треугольнике равны 2 биссектрисы, то этот треугольник является равнобедренным.

История доказательства

Доказательство было дано в работах немецких геометров Якоба Штейнера и Дэниэла Лемуса.

В 1963 году журнал American Mathematical Monthly объявил конкурс на лучшее доказательство теоремы. Было прислано много доказательств, среди которых обнаружились интересные ранее неизвестные. Одно из лучших[1], по мнению редакции, использует метод от противного и окружность, проходящую через 4 точки как дополнительное построение.

В советской литературе распространено доказательство, основанное на следующем признаке равенства треугольников: если угол, биссектриса этого угла и сторона, противолежащая этому углу, одного треугольника равны соответствующим элементам другого треугольника, то такие треугольники равны.

Аналитическое доказательство следует из формулы на длину биссектрисы

Вариации и обобщения

  • Аналогичная теорема для биссектрис внешних углов (отрезков биссектрис внешних углов, проведенных до продолжения сторон) неверна. Один из контрпримеров — треугольник Боттема (нидерл.) — с углами 12°, 132° и 36°. В нём отрезки биссектрис, внешних к первым двум углам, проведённых до пересечения с продолжениями сторон, равны стороне, соединяющей их вершины.

Литература

Примечания

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии