WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Теорема Мора — Маскерони — всё, что можно построить с помощью циркуля и линейки, может быть построено с помощью одного циркуля[1]. Она сводит построения циркулем и линейкой к построениям одним циркулем. Точнее говоря, возможно провести одним только циркулем такие операции, для которых могла бы потребоваться линейка:

  1. По данным точкам A, B, C, D найти точку пересечения прямых AB и CD.
  2. По данной окружности S и двум точкам A и B найти точки пересечения прямой AB с окружностью S. Центр окружности считается заданным.

История

Результат был опубликован Георгом Мором в 1672 году[2] но доказательство было забыто до 1928.[3][4] Теорема была независимо открыта Лоренцо Маскерони в 1797.[5]

См. также

Литература

  • Факультативный курс по математике. 7-9 / Сост. И. Л. Никольская. М.: Просвещение, 1991. — С. 80. — 383 с. ISBN 5-09-001287-3.
  • Аргунов Б.И., Балк М.Б., Геометрические построения на плоскости Учпедгиз, М., 1957

Примечания

  1. Абрамов С. А. Математические построения и программирование. - М., Наука, 1978. - Тираж 100 000 экз. - c. 28
  2. Georg Mohr, Euclides Danicus (Amsterdam: Jacob van Velsen, 1672).
  3. Hjelmslev, J. (1928) «Om et af den danske matematiker Georg Mohr udgivet skrift Euclides Danicus, udkommet i Amsterdam i 1672» [Of a memoir Euclides Danicus published by the Danish mathematician Georg Mohr in 1672 in Amsterdam], Matematisk Tidsskrift B , pages 1-7.
  4. Schogt, J. H. (1938) «Om Georg Mohr’s Euclides DanicusMatematisk Tidsskrift A , pages 34-36.
  5. Lorenzo Mascheroni, La Geometria del Compasso (Pavia: Pietro Galeazzi, 1797).

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии