WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Теорема Киршбрауна о продолжении (иногда называется теорема Валентайн) — теорема о существовании продолжения липшицевой функции определённой на подмножестве евклидова пространства на всё пространство.

Формулировка

Пусть произвольное подмножество евклидова пространства , тогда произвольное короткое отображение можно продолжить до короткого отображения ; иначе говоря, существует короткое отображение такое, что .

Вариации и обобщения

  • Естественно обобщается на
  • Аналогичный результат для отбражений между сферами не верен, однако теорема остаётся верной для
    • Отображения из подмоножества сферы в полусферу той же кривизны.
    • Отображения из подмоножества сферы в сферу той же кривизны не меньшей размерности.
  • Аналогичный результат для банаховых пространств неверен.
  • Обобщение теоремы Киршбрауна на метрические пространства дано Лэнгом и Шрёдерем[1][2]

История

Была доказана в диссертации Мойжеша Киршбрауна (защищена в 1930)[3]. Позже эту теорему передоказал Фредерик Валентайн[4].

См. также

Примечания

  1. Lang, U.; Schroeder, V. Kirszbraun's theorem and metric spaces of bounded curvature. Geom. Funct. Anal. 7 (1997), no. 3, 535–560.
  2. Alexander, Stephanie; Kapovitch, Vitali; Petrunin, Anton Alexandrov meets Kirszbraun. Proceedings of the Gökova Geometry-Topology Conference 2010, 88–109, Int. Press, Somerville, MA, 2011.
  3. M. D. Kirszbraun. Über die zusammenziehende und Lipschitzsche Transformationen. Fund. Math., (22):77-108, 1934.
  4. F. A. Valentine, "On the extension of a vector function so as to preserve a Lipschitz condition, "Bulletin of the American Mathematical Society, vol. 49, pp. 100—108, 1943.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии