В этой статье не хватает ссылок на источники информации. |
Эту статью следует викифицировать. |
Сейсмический осциллятор (сейсмоосциллятор) — одномассовая динамическая система отклика на кинематическое возбуждение. В целом представляет собой классический случай линейной инерционно-упруго-вязкой консервативной (устойчивой) системы с одной степенью свободы. Такая система наглядно представлена в статье «затухающие колебания». Осциллятор состоит из трёх условных элементов: подвижного тела, пружины и демпфера — последние два соединяют тело с платформой (основанием) и являются их связями.
Уравнение вида: M x" + B x’ + C x = M a(t) , записанное в явных параметрах сейсмоосциллятора, отражает динамическое равновесие сил в системе (второй закон Ньютона). Если разделить все члены этого уравнения на массу тела (M>0), то получим уравнение движения тела в неявных параметрах (коэффициентах пропорциональности), причем приняты два варианта представления коэффициента при x’
В данном случае наибольший интерес представляет первый вариант уравнения, где оба коэффициента имеют одинаковую размерность круговой частоты (рад/с), но разный физический смысл:
С их помощью могут быть получены все основные динамические параметры осциллятора.
На практике для расчетов спектров ответа требуется определять параметры каждого отдельного сейсмоосциллятора для заданной собственной частоты «Po» и относительного демпфирования «k». Для этих целей используется простое соотношение: n = k Po / (1 + k2) 0.5, которое определяет недостающий коэффициент уравнения (1) для его численного интегрирования.
В некоторых случаях требуется оценить уровень вынужденных (установившихся) колебаний осциллятора при кинематическом вибровозбуждении ускорением
a (t) = Ao sin (w t) , где " w " — круговая частота вибронагрузки . Безразмерный коэффициент динамичности " D « — есть соотношение амплитуд ускорений осциллятора „Xo“» и основания «Ao» при относительной частоте вибронагрузки ( Ro = w / Po ) и относительном демпфировании " k " :
Формула для расчета "D " по коэффициенту затухания "ζ ", представленному в уравнении (2), получается несколько проще:
Однако данных о коэффициенте затухания " ζ ", как о нормированной характеристике демпфирования для конструкций и материалов, в справочниках и Нормах практически не бывает. Приоритет отдается параметрам "d " и « k», которые взаимосвязаны между собой и могут быть получены непосредственно из экспериментов. Физический смысл коэффициента затухания выявляется из формулы, получаемой из соотношения параметров уравнения (2):
Эта величина есть не что иное, как отношение фактической и критической вязкостей демпфера осциллятора, так как знаменатель в последней части формулы представляет собой значение коэффициента вязкого сопротивления демпфера, при достижении которого возникает апериодическое движение тела. Именно для коэффициента затухания " ζ " уместно пояснение « в долях от критического», которое обычно приписывают в нормативных документах параметру " k " . Два этих параметра связаны между собой соотношением:
Как нетрудно заметить, при малых значениях « k», к каким относится и весь практический диапазон его значений (0.01—0.10), разница между этими параметрами мала.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .