WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Программа минимальных моделей — это часть бирациональной классификации алгебраических многообразий. Её цель — построение как можно более простой бирациональной модели любого комплексного проективного многообразия. Предмет основывается на классической бирациональной геометрии поверхностей, изучаемой итальянской школой и в настоящее время находящейся в активном изучении.

Основные принципы

Основная идея теории заключается в упрощении бирациональной классификации многообразий путём нахождения в каждом классе бирациональной эквивалентности многообразия, которое «так просто, насколько это возможно». Точное значение этой фразы развивается вместе с развитием самой теории. Первоначально для поверхностей это значило нахождение гладкого многообразия , для которого любой бирациональный морфизм[en] с гладкой поверхностью является изоморфизмом.

В современной формулировке целью теории является следующее. Предположим, что нам задано проективное многообразие , которое, для простоты, предполагается несингулярным. Возможны два варианта:

  • Если имеет размерность Кодаиры[en] , мы хотим найти многообразие , бирациональное к , и морфизм в проективное многообразие , такое, что , с антиканоническим классом[en] слоя общего вида , являющегося обильным. Такой морфизм называется пространством расслоения Фано.
  • Если не меньше 0, мы хотим найти , бирациональное с каноническим неф-классом[en] . В этом случае является минимальной моделью для .

Вопрос о несингулярности многообразий и , приведённых выше, является важным. Выглядит естественной надежда, что если мы начинаем с гладкого , мы всегда найдём минимальную модель или пространство расслоения Фано внутри категории гладких многообразий. Однако это неверно, так что становится необходимым рассмотрение сингулярных многообразий. Возникающие сингулярности называются терминальными сингулярностями[en].

Минимальные модели поверхностей

Любая неприводимая комплексная алгебраическая кривая является бирациональной к единственной гладкой проективной кривой, так что теория для кривых тривиальна. Случай поверхности был сначала исследован итальянцами в конце девятнадцатого — начале двадцатого века. Теорема о стягивании Кастельнуово, по существу, описывает процесс построения минимальной модели любой гладкой поверхности. Теорема утверждает, что любой нетривиальный бирациональный морфизм должен стягивать 1-кривую в гладкую точку, и наоборот, любая такая кривая может быть гладко стянута. Здесь 1-кривая является гладкой рациональной кривой C с самопересечением C.C = 1. Любая такая кривая должна иметь K.C=1, что показывает, что если канонический класс является неф-классом, то поверхность не имеет 1-кривых.

Из теоремы Кастельнуово следует, что для построения минимальной модели для гладкой поверхности, мы просто стягиваем все 1-кривые на поверхности, и результирующее многообразие Y либо является (единственной) минимальной моделью с неф-классом K, либо линейчатой поверхностью (которая является такой же, как и 2-мерное пространство расслоения Фано, и является либо проективной плоскостью, либо линейчатой поверхностью над кривой). Во втором случае линейчатая поверхность, бирациональная к X, не единственна, хотя существует единственная поверхность, изоморфная произведению проективной прямой и кривой.

Минимальные модели в пространствах высоких размерностей

В размерностях, больших 2, вовлекается более мощная теория. В частности, существуют гладкие многообразия[en] , которые не бирациональны любому гладкому многообразию с каноническим неф-классом. Главное концепуальное продвижение 1970-х и ранних 1980-х годов — построение минимальных моделей остаётся возможным с тщательным описанием возможных сингулярностей моделей. (Например, мы хотим понять, является ли неф-классом, так что число пересечений должно быть определено. Следовательно, по крайней мере, наши многообразия должны иметь дивизор Картье для некоторого положительного числа .)

Первым ключевым результатом является теорема о конусах[en] Мори, которая описывает структуру конуса кривых . Коротко, теорема показывает, что начиная с , можно по индукции построить последовательность многообразий , каждое из которых «ближе», чем предыдущее к неф-классу . Однако процесс может встретить трудности — в некоторой точке многообразие может стать «слишком сингулярным». Гипотетическое решение этой проблемы — перестройка[en], вид хирургии коразмерности 2 на . Неясно, существует ли требуемая перестройка, или что процесс всегда прервётся (то есть что достигнем минимальную модель за конечное число шагов.) Мори[1] показал, что перестройки существуют в 3-мерном случае.

Существование более общих логперестроек установил Шокуров[2] для размерностей три и четыре. Впоследствии это обобщили для более высоких размерностей Биркар[en], Каскини, Хэкон, и Маккернан, опираясь на более ранние работы Шокурова, Хэкона и Маккернана. Они поставили также некоторые другие задачи, включая обобщение лог-канонических колец и существование минимальных моделей для лог-многообразий общего вида.

Задача обрыва лог-перестроек в пространствах большей размерности остаётся объектом активного исследования.

Примечания

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии