Пленоптическая камера (от лат. plenus, полный + др.-греч. ὀπτικός, зрительный [1]), также камера светового поля — цифровой фотоаппарат или цифровая видеокамера, фиксирующие не распределение освещённости в плоскости действительного изображения объектива, а создаваемое им векторное поле световых лучей (световое поле). На основе картины светового поля может быть воссоздана наиболее полная информация об изображении, пригодная для создания стереоизображения, фотографий с регулируемыми глубиной резкости и фокусировкой, а также для решения различных задач компьютерной графики.
Впервые камера светового поля предложена в 1908 году Габриэлем Липпманом для получения автостереограмм. В 1992 году Эдельсон и Ван разработали конструкцию пленоптической камеры для создания стереопары одним объективом, решающую проблемы параллактического несоответствия краёв снимка[2]. Для достижения эффекта в фокальной плоскости основного объектива фотоаппарата помещается решётка (растр), состоящая из сферических микролинз. В прозрачных растрах чередуются прозрачные и непрозрачные элементы, отражательные растры состоят из зеркально отражающих и поглощающих (или рассеивающих) элементов. ПЗС-матрица находится позади растра и каждый микрообъектив строит на её поверхности элементарное изображение выходного зрачка съёмочного объектива. При дешифровке полученной совокупности изображений создаётся виртуальная векторная модель светового поля, описывающая направление и интенсивность световых пучков, исходящих из объектива[3]. В результате на основе этой модели может быть воссоздана картина распределения освещённости в любой из сопряжённых фокальных плоскостей.
Из-за оптических особенностей камер светового поля их разрешающая способность описывается не в мегапикселях, а в «мегалучах»[4]. Более дешёвая конструкция предусматривает использование вместо массива микролинз растра, состоящего из отверстий. Каждое из отверстий работает, как камера-обскура, создавая элементарное изображение. Растровая маска исключает артефакты, получаемые из-за хроматических аберраций линз, но снижает светосилу всей системы.
При использовании изображений, снятых таким образом, возможны последующий выбор плоскости фокусировки и управление глубиной резкости вплоть до создания резкого изображения сцен, протяжённых в глубину. Выбор любой плоскости фокусировки объектива, жёстко сфокусированного на «бесконечность», происходит в процессе дешифровки данных полученного снимка[5][6]. Впервые «перефокусировка» готовой фотографии осуществлена в 2004 году командой из Стэнфордского университета. Для этого была использована 16 мегапиксельная камера с массивом из 90 000 микролинз. Элементарные изображения каждой микролинзы регистрировались с разрешением около 177 пикселей. Разрешение итогового изображения соответствовало количеству микролинз и составило 90 килопикселей[6].
Главный недостаток такой системы — низкое разрешение итогового снимка, зависящее не от характеристик матрицы, а от количества микролинз в растре[7].
В современной практической фотографии использование камеры светового поля нецелесообразно, поскольку существующие образцы значительно уступают обычным цифровым фотоаппаратам в разрешающей способности и функциональности. Так, для получения конечного изображения разрешением всего 1 мегапиксель требуется фотоматрица, содержащая как минимум 10 мегапикселей[5]. При этом, реализация сквозного электронного видоискателя сопряжена с большими сложностями из-за необходимости дешифровки получаемого массива данных в реальном времени. Из-за особенностей технологии съёмка всегда ведётся при максимальном относительном отверстии объектива, исключая регулировку экспозиции при помощи диафрагмы. Существующие классические цифровые фотоаппараты оснащаются эффективным автофокусом, дающим резкие снимки при любых скоростях съёмки и более высоком качестве изображения.
В то же время пленоптические камеры отлично подходят для прикладных задач, таких как слежения за движущимися объектами[8]. Записи с камер безопасности, основанных на этой технологии, в случае каких-либо происшествий могут быть использованы для создания точных 3D-моделей подозреваемых[9][источник не указан 2540 дней]. Дальнейшее совершенствование технологии может сделать её пригодной для цифрового 3D-кинематографа, поскольку исключает параллактическое несоответствие краёв кадра, и даёт возможность выбирать плоскость фокусировки на готовом изображении, упрощая работу фокус-пуллера.
Лабораторией компьютерной графики Стэнфордского Университета разработан цифровой микроскоп, работающий по аналогичному принципу с линзовым растром. В микрофотографии возможность регулировки глубины резкости позволяет создавать чёткие изображения сравнительно большой глубины без снижения апертуры.
В 2005 году студентами Стэнфордского университета на основе зеркального фотоаппарата «Contax 645» была создана камера, работающая по таким принципам. Перед матрицей цифрового задника была установлена пленоптическая насадка, состоящая из множества микролинз[10]. Исследователь фотографии светового поля Рен Энджи (англ. Ren Ng) на основе этой работы написал диссертацию, а в 2006 году основал проект Lytro[5] (первоначальное название Refocus Imaging),
![]() | чтобы к концу 2011 года создать конкурентоспособную камеру [светового поля], доступную по цене для потребителя, которая умещалась бы в кармане. | ![]() |
В 2011 году при поддержке Стива Джобса компания объявила о приеме заказов на разработанную ею камеру, которая стала доступна в продаже в октябре того же года. При разрешающей способности 11 мегалучей камера обеспечивала физическое разрешение 1080×1080 пикселей[10].
Электротехнической лабораторией компании Mitsubishi разработана камера светового поля «MERL», основанная на принципе оптического гетеродина и растровой маски, расположенной перед фотоматрицей. Любой среднеформатный цифровой задник может быть трансформирован в пленоптический простой установкой такой маски перед штатным сенсором[11]. При этом из-за принципиальных отличий маски от линзового растра удаётся избежать снижения разрешающей способности.
Компания Adobe Systems разработала альтернативный проект камеры, работающей на иных принципах. Устройство снимает на 100-мегапиксельную матрицу одновременно через 19 объективов, сфокусированных на различные дистанции. В результате на 19 участках матрицы размером 5,2 мегапикселей каждая, получаются отдельные изображения объекта съёмки с разной фокусировкой. Дальнейшая обработка массива данных позволяет выбрать изображение с нужной фокусировкой или совместить разные для расширения глубины резкости[12]. Более того, система позволяет создавать трёхмерные фотографии, абсолютно резко отображающие объекты, находящиеся на любых расстояниях, комбинируя резкие участки разных «слоёв» снимка. Компания Nokia инвестирует разработку миниатюрной пленоптической камеры с линзовым растром из 16 ячеек[13].
В апреле 2016 года анонсирован выпуск цифровой кинокамеры «Lytro Cinema» с физическим разрешением матрицы 755 мегапикселей[14][15]. Разработчики утверждают, что новая камера стоимостью 125 тысяч долларов избавляет от необходимости использования технологий блуждающей маски и хромакея, поскольку возможно послойное разделение изображений, находящихся на разных расстояниях от камеры[16]. Кроме того, снятые камерой видеоданные формата lpf, пригодны для создания как «плоских» кинокартин 2D, так и стереофильмов 3D. Главным достоинством «Lytro Cinema» считается возможность отказа от профессии фокус-пуллера[en], неустранимые ошибки которого неизбежны при любой квалификации. Фокусировка на сюжетно важные объекты съёмки может быть выполнена на уже отснятом материале с высокой точностью и произвольной скоростью перевода[17][18].
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .