Лакунарной функцией называется функция, аналитическая в круге сходимости собственного ряда Тейлора, но которая не может быть продолжена аналитически куда-либо за пределы этого круга.
Простейшим примером лакунарной функции будет функция, определённая рядом . Можно показать, что в единичном круге этот ряд сходится и, следовательно, представляет собой аналитическую функцию. Однако можно просто показать, что любая точка единичной окружности будет особой для этого ряда, соответственно, аналитическое продолжение на пределы круга будет невозможно.
В этой статье не хватает ссылок на источники информации. |
![]() |
Это заготовка статьи по математике. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .