WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Голова Быка
Вершин 5
Рёбер 5
Радиус 2
Диаметр 3
Обхват 3
Автоморфизмы 2 (Z/2Z)
Хроматическое число 3
Хроматический индекс 3
Свойства Планарный граф
граф единичных
расстояний

Голова быкапланарный неориентированный граф с 5 вершинами и 5 рёбрами в форме треугольника с двумя непересекающимися висячими рёбрами[1].

Хроматическое число графа равно 3, хроматический индекс равен 3, радиус 2, диаметр 3 и обхват 3. Граф является блоковым, расщепляемым, интервальным графом без клешней, вершинно 1-связным и рёберно 1связным.

Графы, свободные от голов быка

Граф свободен от голов быка, если голова не содержится в качестве порождённого подграфа. Графы без треугольников свободны от голов быка, поскольку каждая голова содержит треугольник. Теорема о сильно совершенном графе[en] была доказана для графов без голов быка задолго до доказательства для графов общего вида[2] и известен алгоритм распознавания совершенных графов без голов быка с полиномиальным временем работы[3].

Мария Чудновская[en] и Самуэль Сафра изучали графы без голов быка в более общем виде и показали, что любой такой граф должен иметь либо большую клику, либо большое независимое множество (то есть Гипотеза Эрдёша – Хайналя[en] выполняется для графов-голов быка)[4] и развили общую теорию структуры таких графов[5][6][7].

Хроматический и характеристический многочлены

Три графа с хроматическим многочленом .

Хроматический многочлен головы быка равен . Два других графа хроматически эквивалентны голове быка.

Характеристический многочлен графа равен .

Многочлен Тата графа равен .

Примечания

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии