WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
У гиперболического параболоида все точки являются гиперболическими

Гиперболическая точка поверхности — в дифференциальной геометрии точка двухмерной поверхности, в которой гауссова кривизна поверхности отрицательна. В гиперболической точке главные кривизны имеют противоположный знак[1].

Связанные определения

Седловая точка поверхности

Седловая точка поверхности — такая точка, что поверхность лежит локально по разные стороны от своей касательной плоскости проведённой в этой точке. Для дважды непрерывно дифференцируемой поверхности из этого следует, что гауссова кривизна в этой точке неположительна. Любая гиперболическая точка является седловой[2].

Некоторые авторы используют термин «седловая точка поверхности» как синоним для «гиперболическая точка поверхности»[1].

Седловая поверхность

Поверхность, у которой каждая точка является гиперболической, называется седловой поверхностью.

Примечания

  1. 1 2 Роджерс Д., Адамс Дж. Математические основы машинной графики.. М.: Мир, 2001. — С. 419. — 604 с.
  2. Седловая точка — статья из Математической энциклопедии. Д. Д. Соколов.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии