WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

АТ-группа или группа алёшинского типагруппа автоморфизмов бесконечного слойно однородного дерева, порожденная корневыми и продольными автоморфизмами (аналог активного и пассивного порождающего в сплетениях групп).

АТ-группы дают примеры Бёрнсайдовых групп (то есть бесконечных периодических не локально конечных групп). В отличие от конструкции групп Евгения Соломоновича Голода 1964 года, также дающей примеры Бернсайдовых групп, АТ-группы допускают прямое изучение, поскольку задаются представлением группы (действием на дереве), а не копредставлением (соотношениями). С использованием конструкции АТ-групп решено более 30 известных проблем в алгебре; в частности, задача Милнора о промежуточном росте.

История

Первый пример АТ-групп был предложен в 1972 году Алёшиным, в честь которого и названы АТ-группы. Термин «АТ-группа» впервые появляется в работе Рожкова[1] Там же впервые построен пример конечно порожденной периодической АТ-группы, в которую вложена любая конечная группа.

Примечания

  1. Рожков А. В., “К теории групп алёшинского типа”, Матем. заметки, 40:5 (1986), 572–589.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии