WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Тест Бройша — Годфри, называемый также LM-тест Бройша — Годфри на автокорреляцию (англ. Breusch-Godfrey serial correlation LM-test) — применяемая в эконометрике процедура проверки автокорреляции произвольного порядка в случайных ошибках регрессионных моделей. Тест является асимптотическим, то есть для достоверности выводов требуется большой объём выборки.

Особенность данного теста заключается в том, что его можно использовать практически всегда, в отличие от, например, критерия Дарбина — Уотсона или h-теста Дарбина. Кроме того, указанные тесты проверяют только автокорреляцию первого порядка, тогда как тест Бройша — Годфри позволяет проверить автокорреляцию любого порядка.

Сущность и процедура теста

Для проверки автокорреляции порядка тест использует вспомогательную регрессию МНК-остатков исходной модели на факторы этой модели и лаговые значения остатков:

Далее для этой вспомогательной регрессии проверяется гипотеза об одновременном равенстве нулю всех коэффициентов при лаговых остатках. Проверка осуществляется с помощью соответствующей LM-статистики, равной , где  — коэффициент детерминации вспомогательной модели, а  — объём выборки (этот объём выборки на меньше объёма выборки для исходной модели, так как из-за лаговых значений остатков во вспомогательной регрессии первые наблюдений не учитываются). Статистика теста имеет асимптотическое распределение . Если значение статистики превышает критическое значение, то автокорреляция признаётся значимой, в противном случае она незначима.

См. также

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии