WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
В этой мозаике на плоскости, состоящей из одинаковых квадратов, зелёные и фиолетовые квадраты соприкасаются полными сторонами, так же, как и голубые и оранжевые квадраты.

Теорема Хайоша утверждает, что если конечная абелева группа представляется в виде прямого произведения симплексов, то есть наборов вида {e,a,a2,...,as-1}, где e — единичный элемент, тогда по меньшей мере один из членов этого произведения является подгруппой. Теорему доказал венгерский математик Дьёрдь Хайош в 1941, используя групповые кольца. Позднее Ласло Редеи[en] доказал это утверждение при требовании лишь присутствия в прямом произведении тождественного элемента и простого числа элементов произведения.

Эквивалентное утверждение на однородных линейных формах было высказано в виде гипотезы Германом Минковским. Следствие гипотезы Минковского на решётке мозаики гласит, что в любой решётчатой мозаике пространства кубами существуют два куба, соприкасающиеся полными гранями (грань-к-грани). Гипотеза Келлера является той же самой гипотезой для нерешётчатых мозаик, которая не верна для более высоких размерностей. Теорему Хайоша обобщил Тибор Силе[en].

Примечания

    Литература

    • G. Hajós. Über einfache und mehrfache Bedeckung des 'n'-dimensionalen Raumes mit einem Würfelgitter // Math. Z.. — 1941. Вып. 47. С. 427–467.
    • H. Minkowski. Diophantische Approximationen. — Leipzig: Drück und Verlag von B. G. Teubner, 1907.

    Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

    Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

    Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




    Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

    Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

    2019-2025
    WikiSort.ru - проект по пересортировке и дополнению контента Википедии