WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Теорема Ту́рана даёт ответ на вопрос о максимальном количестве рёбер в графе без полного n-вершинного подграфа.

Впервые задачу о запрещённом подграфе поставил венгерский математик Пал Туран в 1941 году.

Формулировка

Обозначения

Обозначим через полный n-вершинный граф.

Определим граф с вершинами следующим образом. Разобьём все вершины на «почти равных» групп (то есть возьмём групп по вершине и групп по вершин, если с остатком ) и соединим рёбрами все пары вершин из разных групп. Таким образом получим -дольный граф.

Будем обозначать через максимальное количество рёбер, которое может иметь граф с вершинами, не содержащий подграфа, изоморфного .

Теорема

Среди всех графов на вершинах, не содержащих подграфа , максимальное количество рёбер имеет граф . Если , где — остаток от деления на , то этот максимум равен

Замечания

  • При основную формулу можно записать короче:
    .

Литература

  • «Теория графов» О.Оре. 1980
  • Berge C. Graphs (second revised edition), North — Holland, Amsterdam — New York — Oxford, 1985.
  • Lovasz L. Combinatorial problems and exercises, Academiqi Kiado, Budapest, 1979.

Внешние ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии