Эта статья требует оформления и доводки. |
В этой статье или разделе имеется список источников или внешних ссылок, но источники отдельных утверждений остаются неясными из-за отсутствия сносок. |
Псевдослучайный алгоритм шифрования — такой алгоритм шифрования, что каждый блок (символ) исходного текста шифруется своим собственным ключом, причём каждый следующий ключ является следующим членом псевдослучайной последовательности, а основной (базовый) ключ — первым элементом этой последовательности.
Выбор внутреннего алгоритма сильно зависит от требований, предъявляемых к псевдослучайному алгоритму шифрования. Так существует ряд задач, для которых даже внутренний алгоритм выбирается наиболее криптостойким, однако куда более широкое распространение получили псевдослучайные алгоритмы, где в качестве внутреннего алгоритма шифрования применяются довольно простой, поэтому сам по себе не криптостойкий алгоритм. Выбор простого алгоритма напрямую связан с требованиями к скорости зашифровки и расшифровки.
Выбор генератора псевдослучайных чисел также зависит от требований к псевдослучайному алгоритму шифрования. Если максимальная длина сообщений довольно большая (от 16 Мб) и требования к длине блока высокие (например не более 1 байта на блок или ещё выше), то даже самые лучшие конгруэнтные генераторы не могут быть использованы в качестве необходимого нам генератора псевдослучайных чисел. Зато, если область применения нашего псевдослучайного алгоритма — шифрование относительно коротких сообщений (длиной меньше 1 Кб), а их актуальность во времени не значительна, то в качестве генератора псевдослучайных чисел может быть выбран довольно простой генератор, что также повысит скорость зашифровки и расшифровки.
Все приведенные выше примеры — симметричные алгоритмы шифрования. Никаких сведений об асимметричных псевдослучайных алгоритмах шифрования по состоянию на 2009 год нет. Существуют как потоковые, так и блочные шифры, реализованные в концепции псевдослучайного алгоритма шифрования.
1. «Введение в криптографию», под ред. В. В. Ященко.
2. Варновский Н. П. «О стойкости схем электронной подписи с аппаратной поддержкой». Технический отчет. Лаборатория МГУ по математическим проблемам криптографии, 1997.
3. Гэри М., Джонсон Д. «Вычислительные машины и трудно решаемые задачи». М.: Мир, 1982.
4. Impagliazzo R. , Levin L., Luby M. Pseudo-random generation from one-way functions // Proc. 21st Annu. ACM Symp. on Theory of Computing. 1989. P. 12-24.
5. Анохин М. И., Варновский Н. П., Сидельников В. М., Ященко В. В. «Криптография в банковском деле». М.: МИФИ, 1997.
6. Blum M., Micali S. How to generate crytographically strong sequences of pseudo-random bits // SIAM J. Comput. V. 13, No 4, 1984. P. 850-864.
7. Goldwasser S., Micali S., Rackoff C. The knowledge complexity of interactive proof systems // SIAM J. Comput. V. 18, No 1, 1989. P. 186-208.
8. Goldreich O., Micali S., Wigderson A. Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems // J. ACM. V. 38, No 3, 1991. P. 691-729.
9. Hastad J. Pseudo-random generators under uniform assumptions // Proc. 22nd Annu. ACM Symp. on Theory of Computing. 1990. P. 395-404.
10. Impagliazzo R., Luby M. One-way functions are essential for complexity based cryptography // Proc. 30th Annu. Symp. on Found. of Comput. Sci. 1989. P. 230-235.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .