WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Коммутатором операторов и в алгебре, а также квантовой механике называется оператор . В общем случае он не равен нулю. Понятие коммутатора распространяется также на произвольные ассоциативные алгебры (не обязательно операторные). В квантовой механике за коммутатором операторов также закрепилось название квантовая скобка Пуассона.

Если коммутатор двух операторов равен нулю, то они называются коммутирующими, иначе — некоммутирующими.

Тождества с коммутатором

  • Антикоммутативность: Из этого тождества следует что для любого оператора .

В ассоциативной алгебре верны также следующие тождества:

  • . Это тождество представляет собой правило Лейбница для оператора По этой причине оператор называют внутренним дифференцированием в алгебре. Аналогичным свойством обладает оператор
  • Тождество Якоби: Алгебра, удовлетворяющая тождеству Якоби, называется алгеброй Ли. Таким образом, из любой ассоциативной алгебры можно получить алгебру Ли, если определить умножение в новой алгебре как коммутатор элементов старой алгебры.
  • Это тождество представляет собой другую запись тождества Якоби.
  • Эта формула справедлива в алгебрах, где может быть определена матричная экспонента, например, в Банаховой алгебре или в кольце формальных степенных рядов. Она также играет важнейшую роль в квантовой механике и квантовой теории поля при построении теории возмущений для операторов в представлении Гейзенберга и представлении взаимодействия.

Коммутатор в квантовой механике

Как известно, физическое измерение в квантовой механике соответствует действию оператора физической величины на вектор состояния системы. Так называемые чистые состояния, в которых физическая величина имеет строго определённое значение, соответствуют собственным векторам , при этом значение величины в данном состоянии — это собственное число вектора чистого состояния:

Если две квантовомеханические величины одновременно измеримы, то в чистых состояниях они обе будут иметь определённое значение, то есть множества собственных векторов операторов величин совпадают. Но тогда они будут коммутировать:

Соответственно, некоммутирующие операторы соответствуют физическим величинам, не имеющим одновременно определённого значения. Типичный пример — операторы импульса (компоненты импульса) и соответствующей координаты (см. соотношение неопределённостей).

Законы сохранения

Собственные значения гамильтониана квантовой системы — это значения энергии в стационарных состояниях. Очевидным следствием вышеизложенного является то, что физическая величина, оператор которой коммутирует с гамильтонианом, может быть измерена одновременно с энергией системы. Однако, в квантовой механике энергия приобретает особую роль. Из уравнения Шрёдингера

и определения полной производной оператора по времени

можно получить выражение для полной производной по времени от физической величины, а именно:

Следовательно, если оператор физической величины коммутирует с гамильтонианом, то эта величина не изменяется с течением времени. Это соотношение является квантовым аналогом тождества

из классической механики, где {,} — скобка Пуассона функций. Аналогично классическому случаю, оно выражает наличие у системы определённых симметрий, порождающих интегралы движения. Именно свойство сохранения при определённых симметриях пространства кладётся в основу определения многих квантовых аналогов классических величин, например, импульс определяется как величина, сохраняющаяся при всех трансляциях системы, а момент импульса определяется как величина, сохраняющаяся при вращениях.

Некоторые соотношения коммутации

Укажем значения некоторых часто встречающихся коммутаторов.

 — оператор i-ой компоненты, соответственно, радиус-вектора, импульса и момента импульса;  — дельта Кронекера;  — абсолютно антисимметричный псевдотензор 3-го ранга.

Как правило, необходимы соотношения для нормированного момента:

Из этих соотношений видно, что момент импульса частицы не измерим одновременно с её координатами или импульсом. Более того, за исключением случая, когда момент равен нулю, различные его компоненты не измеримы одновременно. Этим момент импульса принципиально отличается от импульса и радиус-вектора, у которых все три компоненты могут быть одновременно определены. Для момента импульса можно измерить лишь его проекцию на некоторую ось (обычно z) и квадрат его длины.

Алгебра Ли физических величин

Коммутатор является квантовым аналогом скобки Пуассона в классической механике. Операция коммутатора вводит на операторах (или элементах алгебры) структуру алгебры Ли, поэтому антикоммутативное умножение в алгебре Ли также называют коммутатором.

Некоммутирующие величины

Некоммутирующими величинами A и B называются величины, коммутатор которых .

Две физические величины одновременно измеримы тогда и только тогда когда их операторы коммутируют[1].

Антикоммутатор

Антикоммутатор — симметризующий оператор над элементами кольца, определяющий степень «антикоммутативности» умножения в кольце:

Через антикоммутатор вводится коммутативное «йорданово умножение». Алгебра Клиффорда всегда естественным образом связывает антикоммутатор с задающей её билинейной формой.

Примеры

Литература

См. также

Примечания

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии