WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Гармоническая раскраска 7-дерева с тремя уровнями с использованием 12 цветов. Гармоническое хроматическое число этого графа равно 12, поскольку он имеет 57 рёбер число пар цветов равно ncolor*(ncolor-1)/2 >= 57 если только ncolor>=12. Однако (3/2)*(7+1)=12 (смотрите формулу Митчема (Mitchem).

В теории графов гармоническая раскраска — это (правильная) раскраска вершин, при которой любая пара цветов появляется на смежных вершинах не более одного раза. Гармоническое хроматическое число χH(G) графа G — это минимальное число цветов, необходимых для гармонической раскраски графа G.

Любой граф обладает гармонической раскраской, поскольку достаточно раскрасить каждую вершину в свой цвет. Таким образом, χH(G) ≤ |V(G)|. Ясно, что существуют графы G с χH(G) > χ(G) (где χ — хроматическое число). Примером может служить путь длины 2, вершины которого можно раскрасить двумя цветами, но нет гармонической раскраски с 2 цветами.

Некоторые свойства χH(G):

  1. χH(Tk,3) = ⌈(3/2)(k+1)⌉, где Tk,3 — это полное k-арное дерево с 3 уровнями. (Mitchem 1989)

Гармоническая раскраска была впервые предложена Харари и Плантхолт (Harary, Plantholt, 1982). Мало что известно об этом типе раскраски.

См. также

Литература

  • O. Frank, F. Harary, M. Plantholt. The line-distinguishing chromatic number of a graph // Ars Combin. — 1982. Т. 14. С. 241–252.
  • Jensen, Tommy R.; Toft, Bjarne (1995). Graph coloring problems. New York: Wiley-Interscience. ISBN 0-471-02865-7.
  • J. Mitchem. On the harmonious chromatic number of a graph // Discrete Math.. — 1989. Т. 74. С. 151–157. DOI:10.1016/0012-365X(89)90207-0.

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии