Аксиомой регулярности (иначе аксиомой фундирования, аксиомой основания) называется следующее высказывание теории множеств:
Словесная формулировка:
Из аксиомы можно вывести два следствия: «Никакое множество не является элементом самого себя» и «Не существует бесконечной последовательности an, такой, что ai+1 — элемент ai для всех i».
Аксиома фундирования указана П. Бернайсом и К. Гёделем в 1941 году и заменила аксиому регулярности, предложенную Дж. фон Нейманом в 1925 году.
Для улучшения этой статьи по математике желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .