WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Функция принадлежности нечёткого множества — обобщение индикаторной (или характеристической) функции классического множества. В нечёткой логике она представляет степень принадлежности каждого члена пространства рассуждения к данному нечёткому множеству.

Определение

Для пространства рассуждения и данной функции принадлежности нечёткое множество определяется как

Функция принадлежности количественно градуирует принадлежность элементов фундаментального множества пространства рассуждения нечёткому множеству . Значение означает, что элемент не включен в нечёткое множество, описывает полностью включенный элемент. Значения между и характеризуют нечётко включенные элементы.

Нечёткое множество и классическое, четкое (crisp) множество

Классификация функций принадлежности нормальных нечетких множеств

Нечеткое множество называется нормальным, если для его функции принадлежности справедливо утверждение, что существует такой , при котором .

Функция принадлежности класса s

Функция принадлежности класса s определяется как:

где .

Функция принадлежности класса π

Функция принадлежности класса π определяется через функцию класса s:

где .

Функция принадлежности класса γ

Функция принадлежности класса γ определяется как:

Функция принадлежности класса t

Функция принадлежности класса t определяется как:

Функция принадлежности класса L

Функция принадлежности класса L определяется как:

См. также

Внешние ссылки

Литература

  • Д. Рутковская, М. Пилиньский, Л. Рутковский. Нейронные сети, генетические алгоритмы и нечеткие системы: Пер. с польского И. Д. Рудинского. — М.:Горячая линия — Телеком, 2004. — 452 с — ISBN 5-93517-103-1

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии