WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Теорема об открытом отображении утверждает

Линейный непрерывный оператор , отображающий банахово пространство на все банахово пространство , является открытым отображением, то есть открыто в для любого , открытого в ;

Условиям теоремы об открытом отображении удовлетворяет, например, всякий ненулевой линейный непрерывный функционал, определенный на вещественном (комплексном) банаховом пространстве со значениями в (или в ).

Теорема доказана Стефаном Банахом. Из неё немедленно следует теорема Банаха о гомеоморфизме:

Непрерывный линейный оператор , отображающий взаимно однозначно банахово пространство на банахово пространство , является гомеоморфизмом, то есть ― также линейный непрерывный оператор.

Обобщения

Теорема об открытом отображении допускает следующее обобщение:

Непрерывный линейный оператор, отображающий совершенно полное топологическое векторное пространство на бочечное пространство , есть открытое отображение.

См. также

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии