WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Теорема Пестова — Ионина — классическая теорема дифференциальной геометрии плоских кривых, обобщение теоремы о четырёх вершинах.

Теорема сформулирована Абрамом Ильичом Фетом, доказана Германом Гавриловичем Пестовым, его доказательтво существенно упрощено Владимиром Кузьмичём Иониным[1]. Для выпуклых кривых результат был известен существенно раньше.[2]

Формулировка

Любая область плоскости, ограниченная гладкой замкнутой кривой с кривизной не более 1, содержит круг радиуса 1.

Четыре соприкасающиеся окружности лежащие по одну сторону от данной замкнутой кривой.

Вариации и обобщения

  • Из доказательства Пестова и Ионина следует более сильное утверждение: для любой простой гладкой замкнутой регулярной кривой на плоскости существуют две точки соприкасающаяся окружность в которых содержится в замкнутой области внутри кривой; также существуют две точки соприкасающаяся окружность в которых содержится во внешней замкнутой области кривой.
  • Аналогичный результат в пространстве не верен, а именно существуют вложения сферы с главными кривизнами, не превосходящими 1 по абсолютной величине, такие, что ограниченная ею область не содержит шара радиуса 1. [3]

Примечания

  1. Пестов, Г. Г., Ионин В. К. О наибольшем круге, вложенном в замкнутую кривую // Доклады АН СССР. — 1959. Т. 127, № 6.
  2. Wilhelm Blaschke Kreis und Kugel, Leipzig, Veit 1916, 3. Auflage, Berlin, de Gruyter 1956; русский перевод Круг и шар, М.: Наука, 1967, глава IV §24.
  3. В. Н. Лагунов. «О наибольшем шаре, вложенном в замкнутую поверхность, II». Сибирский математический журнал 2.6 (1961), с. 874—883.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии