WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Теорема Лагерра - теорема о свойствах производной целой функции.

Формулировка

Пусть - целая функция порядка, меньшего чем 2, вещественная при вещественных значениях и с вещественными нулями. Тогда нули производной также все вещественны и отделены друг от друга нулями функции .

Пояснения

Целая функция есть аналитическая функция, не имеющая особенностей в конечной части плоскости. Целая функция называется функцией конечного порядка, если существует такое положительное число , что при выполняется равенство . Нижняя грань чисел в этом равенстве называется порядком функции.

Литература

  • Е. Титчмарш Теория функций, М., Наука, 1980, 2-е изд., 461 стр.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии