Ранг неориентированного графа имеет два не связанных друг с другом определения. Пусть n равно числу вершин графа.
- Аналогично, дефект[en] графа определяется как дефект ядра его матрицы смежности, что равно n − r.
- Аналогично, дефект[en] графа — это дефект ядра[en]* ориентированной матрицы инцидентности, который задаётся формулой m − n + c, где n и c определены выше, а m — число рёбер графа. Дефект равен первому числу Бетти графа. Сумма ранга и дефекта даёт число рёбер.
Литература
- Jerrold W. Grossman, Devadatta M. Kulkarni, Irwin E. Schochetman. On the minors of an incidence matrix and its Smith normal form // Linear Algebra and its Applications. — 1995. — Т. 218. — С. 213–224. — DOI:10.1016/0024-3795(93)00173-W.
- Wai-Kai Chen. Applied Graph Theory. — North Holland Publishing Company, 1976. — ISBN 0-7204-2371-6.
- Hedetniemi S. T., Jacobs D. P., Laskar R. Inequalities involving the rank of a graph. // Journal of Combinatorial Mathematics and Combinatorial Computing. — 1989. — Т. 6. — С. 173–176.
- The rank of a graph after vertex addition // Linear Algebra and its Applications. — 1997. — Т. 265. — С. 55–69.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .