Д’Аламбера — Лагранжа принцип — один из основных принципов механики, согласно которому, если к заданным (активным) силам, действующим на точки механической системы присоединить силы инерции, то при движении механической системы с идеальными связями в каждый момент времени сумма элементарных работ активных сил и элементарных работ сил инерции на любом возможном (виртуальном) перемещении системы равна нулю[1]
Принцип Д’Аламбера-Лагранжа является объединением принципа возможных перемещений статики и принципа Д'Аламбера динамики. Его использование позволяет изучать движения механических систем с идеальными связями, не вводя в уравнения движения неизвестные реакции связей.
Пусть механическая система с голономными, удерживающими, идеальными связями представлена материальными точками с массами [2]. Пусть к каждой материальной точке приложены активные силы с равнодействующей и пассивные силы с равнодействующей . Согласно второму закону Ньютона:
или
Зафиксируем теперь некоторый момент времени и сообщим механической системе виртуальное (возможное) перемещение . Умножим скалярно каждое уравнение (1) на соответствующее и суммируем все уравнения:
Сумма работ идеальных связей на любом виртуальном перемещении равна нулю, поэтому:
Это равенство называется общим уравнением механики.
Во всякой механической системе с идеальными удерживающими связями в каждый момент времени движения на любом виртуальном перемещении сумма механических работ, производимых активными силами и силами инерции, всегда равна нулю.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .