Мера Синая — Рюэлля — Боуэна, или SRB-мера, — мера на фазовом пространстве динамической системы, к которой стремится распределение траекторий типичных начальных (в смысле меры Лебега) точек (возможно, из какой-либо области). При этом множество точек, для которых происходит такое стремление, называется бассейном притяжения этой меры.
Понятие названо в честь Я. Г. Синая, Д. Рюэлля и Р. Боуэна, в работах которых оно было введено.
Более точно, имеется два неэквивалентных понятия: определение меры Синая-Рюэля-Боуэна, связанное с итерациями типичных точек («наблюдаемая мера»), и его модификация, связанная с итерациями абсолютно непрерывных мер («естественная мера»).
Определение 1. Мера называется (наблюдаемой) мерой Синая-Рюэлля-Боуэна, если для множества начальных точек положительной меры Лебега распределение орбит сходится к :
В этом случае множество точек x, удовлетворяющих (*), называется бассейном притяжения меры .
Эквивалентным образом это определение может быть сформулировано в терминах временных средних:
Определение 1'. Мера называется (наблюдаемой) мерой Синая-Рюэлля-Боуэна, если для некоторого множества положительной меры Лебега временные средние любой непрерывной функции на сходятся почти всюду к её интегралу по мере
В этом случае максимальное множество , для которого выполнено (**), называется бассейном притяжения меры .
В случае естественной меры рассматриваются итерации не атомарной начальной меры (или, что то же самое, распределение индивидуальной орбиты), а усреднение абсолютно непрерывных начальных мер:
Определение 2. Мера называется (естественной) мерой Синая-Рюэлля-Боуэна, если для некоторого множества положительной меры Лебега для любой абсолютно непрерывной начальной меры m её временные средние сходятся почти всюду мере :
В этом случае максимальное измеримое множество , для которого выполнено (***), называется бассейном притяжения меры .
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .