WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

В математической статистике критерий знаков используется при проверке нулевой гипотезы о равенстве медианы некоторому заданному значению (для одной выборки) или о равенстве нулю медианы разности (для двух связанных выборок).[1] Это непараметрический критерий, то есть он не использует никаких данных о характере распределения, и может применяться в широком спектре ситуаций, однако при этом он может иметь меньшую мощность, чем более специализированные критерии.

Описание метода для двух выборок

Рассмотрим две непрерывно распределенные случайные величины X и Y, и пусть нулевая гипотеза выполняется, то есть медиана их разности равна нулю. Тогда . Иными словами, каждая из случайных величин равновероятно больше другой.

Рассмотрим пару связных выборок . Будем считать, что в выборке нет элементов, для которых (иначе уберем эти элементы из выборки). Построим статистику w, равную числу элементов в выборке, при которых . При выполнении нулевой гипотезы, эта величина имеет биномиальное распределение: .

Для применения критерия необходимо вычислить «левый хвост» биномиального распределения до w: . Согласно критерию, при уровне значимости :

  • против двусторонней альтернативной гипотезы
если , то нулевая гипотеза отвергается;
  • против альтернативы
если , то нулевая гипотеза отвергается;
  • против альтернативы
если , то нулевая гипотеза отвергается;

Пример задачи

Первая выборка — это значения некоторой характеристики состояния пациентов, записанные до лечения. Вторая выборка — это значения той же характеристики состояния тех же пациентов, записанные после лечения.

Порядок элементов (в данном случае пациентов) в выборках и объёмы выборок обязаны совпадать. Такие выборки и называются связанными.

Требуется выяснить, является ли лечение эффективным, то есть имеется ли значимое отличие в состоянии пациентов до и после лечения, или различия чисто случайны.

Заданы две выборки одинаковой длины .

Дополнительные предположения:

  • обе выборки простые;
  • выборки связные, то есть элементы соответствуют одному и тому же объекту, но измерения сделаны в разные моменты (например, до и после обработки).

Нулевая гипотеза .

Если в выборке имеются случаи , то их следует исключить из выборки, уменьшив число наблюдений. Статистика критерия — это число w элементов в выборке, при которых .

Ссылки

  1. The Sign Test for a Median // STAT 415 Intro Mathematical Statistics. Penn State University.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии