WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Интерполяционное пространство — понятие функционального анализа, описывающее свойства банаховых пространств.

Определение

Пусть - банаховы пространства, и - две банаховы пары, а и - промежуточные банаховы пространства между и , и соответственно. Тройка называется интерполяционной относительно тройки , если всякий ограниченный оператор из пары в пару отображает пространство в пространство . Пространство называется интерполяционным между пространствами банаховой пары и , если совпадает с , совпадает с и совпадает с .[1]

Банахова пара пространств

Банаховой парой называются два банаховых пространства и , алгебраически и топологически вложенные в некоторое отделимое топологическое линейное пространство .[2]

Вложенное банахово пространство

Банахово пространство вложено в банахово пространство , если:

  1. Из следует, что .
  2. Пространство индуцирует на структуру векторного пространства, совпадающую со структурой векторного пространства .
  3. Существует такая константа , что для всех .[3]

Промежуточное банахово пространство

Банахово пространство называется промежуточным для пары банаховых пространств , если имеются вложения . Символ означает алгебраическое и непрерывное вложение. Для того, чтобы банахово пространство было промежуточным, достаточно, чтобы оно было алгебраически и непрерывно вложено в пространство , содержало в себе пространство и содержалось в пространстве .[4]

Примечания

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии