Интерполяционное пространство — понятие функционального анализа, описывающее свойства банаховых пространств.
Пусть - банаховы пространства, и - две банаховы пары, а и - промежуточные банаховы пространства между и , и соответственно. Тройка называется интерполяционной относительно тройки , если всякий ограниченный оператор из пары в пару отображает пространство в пространство . Пространство называется интерполяционным между пространствами банаховой пары и , если совпадает с , совпадает с и совпадает с .[1]
Банаховой парой называются два банаховых пространства и , алгебраически и топологически вложенные в некоторое отделимое топологическое линейное пространство .[2]
Банахово пространство вложено в банахово пространство , если:
Банахово пространство называется промежуточным для пары банаховых пространств , если имеются вложения . Символ означает алгебраическое и непрерывное вложение. Для того, чтобы банахово пространство было промежуточным, достаточно, чтобы оно было алгебраически и непрерывно вложено в пространство , содержало в себе пространство и содержалось в пространстве .[4]
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .