Имитационное моделирование (англ.simulation modeling) — метод исследования, при котором изучаемая система заменяется моделью, с достаточной точностью описывающей реальную систему (построенная модель описывает процессы так, как они проходили бы в действительности), с которой проводятся эксперименты с целью получения информации об этой системе. Такую модель можно «проиграть» во времени, как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно[источник не указан 414 дней] устойчивую статистику. Экспериментирование с моделью называют имитацией (имитация — это постижение сути явления, не прибегая к экспериментам на реальном объекте).
Имитационное моделирование — это частный случай математического моделирования.[1] Существует класс объектов, для которых по различным причинам не разработаны аналитические модели, либо создание аналитической модели принципиально невозможно, либо не разработаны методы решения полученной модели, либо решения неустойчивы. В этом случае аналитическая модель заменяется имитатором или имитационной моделью.
Имитационным моделированием иногда называют получение частных численных решений сформулированной задачи на основе аналитических решений или с помощью численных методов[2].
Имитационная модель — логико-математическое описание объекта, которое может быть использовано для экспериментирования на компьютере в целях проектирования, анализа и оценки функционирования объекта.
Применение имитационного моделирования
К имитационному моделированию прибегают, когда:
дорого или невозможно экспериментировать на реальном объекте;
невозможно построить аналитическую модель: в системе есть время, причинные связи, последствие, нелинейности, стохастические (случайные) переменные;
необходимо сымитировать поведение системы во времени.
Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между её элементами или другими словами — разработке симулятора (англ.simulation modeling) исследуемой предметной области для проведения различных экспериментов.
Виды имитационного моделирования
Три подхода имитационного моделированияПодходы имитационного моделирования на шкале абстракции
Дискретно-событийное моделирование — подход к моделированию, предлагающий абстрагироваться от непрерывной природы событий и рассматривать только основные события моделируемой системы, такие, как: «ожидание», «обработка заказа», «движение с грузом», «разгрузка» и другие. Дискретно-событийное моделирование наиболее развито и имеет огромную сферу приложений — от логистики и систем массового обслуживания до транспортных и производственных систем. Этот вид моделирования наиболее подходит для моделирования производственных процессов. Основан Джеффри Гордоном в 1960-х годах.
Системная динамика — парадигма моделирования, где для исследуемой системы строятся графические диаграммы причинных связей и глобальных влияний одних параметров на другие во времени, а затем созданная на основе этих диаграмм модель имитируется на компьютере. По сути, такой вид моделирования более всех других парадигм помогает понять суть происходящего выявления причинно-следственных связей между объектами и явлениями. С помощью системной динамики строят модели бизнес-процессов, развития города, модели производства, динамики популяции, экологии и развития эпидемии. Метод основан Джеем Форрестером в 1950 годах.
Агентное моделирование — относительно новое (1990-е-2000-е гг.) направление в имитационном моделировании, которое используется для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами (как в других парадигмах моделирования), а наоборот, когда эти глобальные правила и законы являются результатом индивидуальной активности членов группы. Цель агентных моделей — получить представление об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении её отдельных активных объектов и взаимодействии этих объектов в системе. Агент — некая сущность, обладающая активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, взаимодействовать с окружением, а также самостоятельно изменяться.
Области применения
Список примеров в этом разделе не основывается на авторитетных источниках, посвящённых непосредственно предмету статьи или её раздела.
Добавьте ссылки на источники, предметом рассмотрения которых является тема настоящей статьи (или раздела) в целом, а не отдельные элементы списка. В противном случае раздел может быть удалён.
↑ S.E. Mattsson, M. Andersson and K.J..Aström: Object-oriented modeling and simulation. In: Linkens, ed., CAD for Control Systems (Marcel Dekker, 1993) pp. 31-69.
Хемди А. Таха.Глава 18. Имитационное моделирование//Введение в исследование операций=Operations Research: An Introduction.— 7-е изд.— М.: «Вильямс», 2007.— С.697-737.— ISBN 0-13-032374-8.
Строгалев В. П., Толкачева И. О.Имитационное моделирование.— МГТУ им. Баумана, 2008.— С.697-737.— ISBN 978-5-7038-3021-5.
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.ru - проект по пересортировке и дополнению контента Википедии