Алгоритм Монтгомери — приём, позволяющий ускорить выполнение операций умножения и возведения в квадрат, необходимых при возведении числа в степень по модулю, когда модуль велик (порядка сотен бит). Был предложен в 1985 году Питером Монтгомери.
По данным целым числам a, b < n, r, НОД алгоритм Монтгомери вычисляет
Положим .
Определим n-остаток (n-residue) числа как .
Алгоритм Монтгомери использует свойство, что множество является полной системой вычетов, то есть содержит все числа от 0 до n-1.
MonPro вычисляет . Результат является n-остатком от , так как
Определим n' так, что . и можно вычислить с помощью расширенного алгоритма Евклида.
Функция
1. 2. 3. while 4. return
Операции умножения и деления на r выполняются очень быстро, так как при представляют собой просто сдвиги бит, а при цикл в строчке 3 выполнится не более одного раза. Таким образом алгоритм Монтгомери быстрее обычного вычисления , которое содержит деление на n. Однако вычисление n' и перевод чисел в n-остатки и обратно — трудоёмкие операции, вследствие чего применять алгоритм Монтгомери при однократном вычислении произведения двух чисел представляется неразумным.
Использование алгоритма Монтгомери оправдывает себя при возведении числа в степень по модулю .
Функция
1. 2. 3. for i=j-1 downto 0 if then 4. return
Возведение числа в степень битовой длины k алгоритмом «возводи в квадрат и перемножай» включает в себя от k до 2k умножений, где k имеет порядок сотен или тысяч бит. При использовании алгоритма возведения в степень Монтгомери объём дополнительных вычислений фиксирован (вычисления , , в начале и в конце), а операция MonPro выполняется быстрее обычного умножения по модулю[1], поэтому алгоритм возведения в степень Монтгомери даст выигрыш в производительности по сравнению с алгоритмом «возводи в квадрат и перемножай».
![]() |
Это заготовка статьи по математике. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .