WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Аксиомой объёмности называется следующее высказывание теории множеств:

Если переписать аксиому объёмности в виде

,

тогда названную аксиому можно сформулировать следующим образом:

«Каковы бы ни были два множества, если каждый элемент 1-го множества принадлежит 2-му множеству, а каждый элемент 2-го множества принадлежит 1-му множеству, тогда первое множество идентично второму множеству.»

Другая формулировка[1]:

«Два множества равны в том и только в том случае, когда они состоят из одних и тех же элементов.»

Другие формулировки аксиомы объёмности

Примечания

Аксиома объёмности выражает необходимое условие равенства двух множеств. Достаточное условие равенства множеств выводится из аксиом предиката , а именно:

,
, где  — любое математически корректное суждение об , а  — то же самое суждение, но об .

Соединяя указанное достаточное условие равенства множеств с аксиомой объёмности, получаем следующий критерий равенства множеств:

Указанный критерий равенства множеств не хуже и не лучше других аналогичных критериев, включая:

1) критерий равенства комплексных чисел

,

2) критерий равенства упорядоченных пар

,

3) критерий равенства неупорядоченных пар

,

4) критерий равенства двух последовательностей

.

Из изложенного ясно, что аксиома объёмности является органичной частью аксиоматики теории множеств.

Аксиому объёмности применяют при доказательстве единственности множества, существование которого уже декларировано [аксиомой] либо установлено [доказательством теоремы].

Примеры

1. Доказательство единственности пустого множества

Существование [по меньшей мере одного] пустого множества декларировано аксиомой

.

Требуется доказать существование не более, чем одного множества , для которого верно высказывание

.

Иначе говоря, требуется доказать

Или, что то же самое, требуется доказать

Доказательство

Поскольку , постольку доказательство единственности пустого множества завершено.

2. Доказательство единственности множества подмножеств

Существование [по меньшей мере одного] множества подмножеств декларировано аксиомой

Требуется доказать существование не более, чем одного множества , для которого верно высказывание

Иначе говоря, требуется доказать

Или, что то же самое, требуется доказать

Доказательство

Поскольку , постольку доказательство единственности множества подмножеств завершено.


См. также

Примечания

  1. Столл Р. Множества. Логика. Аксиоматические теории. - М., Просвещение, 1968. - Тираж 70 000 экз. - С. 13

Литература


Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии